

Edition 1.0 2019-05

TECHNICAL SPECIFICATION

Flexible display devices -STANDARD PREVIEW Part 5-4: Measuring method of blur in flexible transparent displays (standards.iten.al)

IEC TS 62715-5-4:2019 https://standards.iteh.ai/catalog/standards/sist/cac5def4-fca2-420d-aa63-59102ec11c59/iec-ts-62715-5-4-2019

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2019 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland Tel.: +41 22 919 02 11 info@iec.ch www.jec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore liec ch/csc and collected fr If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch. IEC TS 62715-5-42019

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 000 terminological entries in English and French, with equivalent terms in 16 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary

67 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

https://standards.iteh.ai/catalog/standards/sist/cac5def4-fca2-420d-aa63-

59102ec11c59/iec-ts-62715-5-4-2019

Edition 1.0 2019-05

TECHNICAL SPECIFICATION

Flexible display devices -STANDARD PREVIEW Part 5-4: Measuring method of blur in flexible transparent displays

IEC TS 62715-5-4:2019 https://standards.iteh.ai/catalog/standards/sist/cac5def4-fca2-420d-aa63-59102ec11c59/iec-ts-62715-5-4-2019

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 31.120

ISBN 978-2-8322-6928-2

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FORE	EWOR	RD	3	
1 5	Scope		5	
2 1	Norma	tive references	5	
3 1	Ferms	, definitions and abbreviated terms	5	
3.1	ר ו	Γerms and definitions	5	
3.2	2 A	Abbreviated terms	5	
4 N	Measu	Iring conditions	6	
4.1	1 5	Standard measuring environmental conditions	6	
4.2	2 5	Standard darkroom conditions	6	
4.3	3 5	Standard setup conditions	6	
4	1.3.1	Display mounting	6	
4	1.3.2	Measuring configuration	6	
4	1.3.3	Starting conditions of measurements	7	
4	1.3.4	Conditions of measuring equipment	7	
5 E	Blur ca	aused by a flexible transparent display	8	
5.1	1 F	Purpose	8	
5.2	2 N	Measuring conditions	9	
5.3	3 N	Measuring method	9	
Annex A (informative) Example of blur measurement configuration				
Α.	1 F	Purpose	3	
A.2	2 E	Examples of parameters in blur measurement1	3	
Biblio	graph	iy1	6	
		https://standards.tteh.ai/catalog/standards/sist/cac5det4-tca2-420d-aa63- 59102ec11c59/jec_ts_62715_5_4_2019		
Figur	e 1 – (Geometric configuration of measuring system	7	
Figure 2 – Layout diagram of measurement setup				
Figur	e 3 – I	Examples of test pattern with and without blur and luminance		
meas	ureme	ents	9	
Figur devia	e 4 – : tion s	Schematic diagram to illustrate the method of calculating the standard pecifying the Gaussian blur model1	1	
Figure A.1 – Examples of different levels of blur				
. igui			Ũ	
Table 1 – Example of test report for blur measure				
Table value	A.1 – s of bl	- Examples of the maximum measurement field diameter for different lur width1	4	
Table	A.2 -	- Examples of the maximum measurement field diameter for different	٨	
		Examples of DDI for different, configurations of a reference diamley device	4 1	
	A.3 -	- Examples of PPT for unreferre of unreferred splay device1	4	
l able	A.4 – spond	 Examples of combinations of measurement field diameter and ling distance from the LMD to the reference display device yielding a part field angle of 1° 	F	
meas	aronic		J	

INTERNATIONAL ELECTROTECHNICAL COMMISSION

FLEXIBLE DISPLAY DEVICES –

Part 5-4: Measuring method of blur in flexible transparent displays

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committee; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, EC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter. IEC TS 62715-5-42019
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. In exceptional circumstances, a technical committee may propose the publication of a technical specification when

- the required support cannot be obtained for the publication of an International Standard, despite repeated efforts, or
- the subject is still under technical development or where, for any other reason, there is the future but no immediate possibility of an agreement on an International Standard.

Technical specifications are subject to review within three years of publication to decide whether they can be transformed into International Standards.

IEC TS 62715-5-4, which is a technical specification, has been prepared by IEC technical committee 110: Electronic displays.

The text of this technical specification is based on the following documents:

Enquiry draft	Report on voting
110/1055/DTS	110/1084/RVTDS

Full information on the voting for the approval of this technical specification can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 62715 series, published under the general title *Flexible display devices*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

iTeh STANDARD PREVIEW

A bilingual version of this publication may be issued at a later date.

IEC TS 62715-5-4:2019

https://standards.iteh.ai/catalog/standards/sist/cac5def4-fca2-420d-aa63-

59102ec11c59/jec-ts-62715-5-4-2019

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

FLEXIBLE DISPLAY DEVICES –

Part 5-4: Measuring method of blur in flexible transparent displays

1 Scope

This part of IEC 62715 specifies the measuring conditions and measuring methods for determining the blur of objects when viewed through a flexible transparent display. This document mainly applies to flexible transparent display modules that have a constant radius curvature about a single axis. The display is measured in a static mechanical state.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 62715-1-1, Flexible display devices – Part 1-1: Terminology and letter symbols

IEC 62715-5-1, Flexible display devices – Part 5-1: Measuring methods of optical performance **Teh STANDARD PREVIEW**

3 Terms, definitions and abbreviated terms **iteh.ai**)

For the purposes of this part of IEC 62715, the terms and definitions in IEC 62715-1-1 and the https://standards.iteh.ai/catalog/standards/sist/cac5def4-fca2-420d-aa63-59102ec11c59/iec-ts-62715-5-4-2019

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

3.1 Terms and definitions

3.1.1

blur

unclear or indistinct outline of objects when they are viewed through a flexible transparent display

3.1.2

through-screen properties

image quality attributes when the intended information is behind the display panel and is viewed through it

3.1.3

pixel

smallest element of a picture that can be distinguished from its neighbouring elements

3.2 Abbreviated terms

DUT device under test

- LMD light measuring device
- PPI pixels per inch

4 Measuring conditions

4.1 Standard measuring environmental conditions

Measurements shall be carried out under the standard environmental conditions:

- temperature: $25 \degree C \pm 3 \degree C$,
- relative humidity: 25 % to 85 %,
- atmospheric pressure: 86 kPa to 106 kPa.

When different environmental conditions are used, they shall be noted in the test report.

4.2 Standard darkroom conditions

The luminance contribution from unwanted background illumination reflected off and/or transmitted through the DUT shall be less than 1/20 of the DUT's black state luminance. If this condition is not satisfied, then background subtraction is required and it shall be noted in the test report. In addition, if the sensitivity of the LMD is inadequate to measure at these low levels, then the lower limit of the LMD shall be noted in the test report.

4.3 Standard setup conditions

4.3.1 Display mounting

The fixture used to mount a curved display plays a critical role in obtaining accurate and reproducible results.[1]¹ The display mount should be designed to accommodate the specific bendable characteristics of the flexible transparent display in its intended use configuration. The mount should be capable of maintaining the intended shape of the display and locate it in the required measurement position and viewing direction. The measuring methods specified in this document only apply for displays that have a constant radius of curvature about a single axis. 59102ec11c59/iec-ts-62715-5-4-2019

The origin of the coordinate system is positioned at the imaging surface of the DUT and centered on the screen. Unless otherwise specified, the optical axis of the LMD shall be aligned to within 1° of the DUT's surface normal at its centre. For spot-type LMDs, the retro-reflection of the LMD can be used to obtain this alignment. Otherwise, an alignment laser can be used to define the optical axis. The methods also assume that the rotation stages and mechanical mounting have sufficient accuracy and stability to maintain a tolerance of less than 1°.

4.3.2 Measuring configuration

Figure 1 illustrates the geometric configuration of the DUT, reference display device and LMD. The DUT is located in its intended use configuration using the display mounting fixture. It is positioned so that the optical axis of the LMD shall be aligned to within 1° of the DUT's surface normal at its centre. The purpose of the reference display device is to display a test pattern. A flat display can be used as a reference display device. It is positioned to be parallel to the DUT's surface normal at the centre. In Figure 1, the distance from the DUT to the reference display device is denoted as background distance. Background distance can be determined for convenience of measurement and based on the intended applications of the DUT. The LMD shall be focused on the test pattern.

¹ Numbers in square brackets refer to the Bibliography.

Figure 1 – Geometric configuration of measuring system (standards.iteh.ai)

4.3.3 Starting conditions of measurements

Measurements shall be started after the DUT, reference display device and the LMD achieve stability. It is recommended that when the display is first turned on, it should be operated for at least 30 min. Sufficient warm-up time has to be allowed for both the DUT and reference display device to reach a luminance stability level of less than ± 3 % over the entire measurement.

4.3.4 Conditions of measuring equipment

The general conditions of the measuring equipment specified in IEC 62715-5-1 are adopted. Light measurements shall generally be measured in terms of photometric or colorimetric units for a CIE 1931 standard colorimetric observer [2]. Illuminance incident on the DUT can be measured by a photometer. The LMD shall be a luminance meter, colorimeter, or a spectroradiometer. An imaging LMD can be used for two-dimensional measurements of transmitted luminance to eliminate the need for translational motions. When a twodimensional LMD is used for measurement, efforts shall be made so that the measurement results of the two-dimensional LMD are equal to those of the spot-type LMD. A moiré pattern from interference between the pixel patterns of the DUT and LMD can be prevented by focusing the LMD on the test target. If the test target is displayed on a reference display, a moiré pattern from interference between the pixel patterns of the reference display and the LMD can be prevented by using a reference display of high resolution (at least twice the resolution of the imaging LMD focused on the reference display, or by setting the spot LMD to a measurement field that includes more than 500 pixels of the reference display). When a two-dimensional LMD is not available, the measurement can be made by translating the spottype LMD parallel to the surface of the reference display device and measuring the transmitted luminance along the line of measurement. When using a spot LMD and a translation scan, undesirable aliasing defects should be avoided by complying to the scanning theorem, for example choosing a sampling distance (the linear distance between consecutive spot measurements) not greater than 0,7 of the spot diameter.

The spectroradiometer shall be capable of measuring spectral radiance over at least the 380 nm to 780 nm wavelength range, with a maximum bandwidth of 10 nm for smooth broadband spectra. For light sources that have sharp spectral features, like LEDs and fluorescent lamps, the maximum bandwidth shall be ≤ 5 nm. The spectral bandwidth of the spectroradiometer shall be an integer multiple of the sampling interval. For example, a 5 nm sampling interval can be used for a 5 nm or 10 nm bandwidth.

Care shall be taken to ensure that the LMD has enough sensitivity and dynamic range to perform the required task. The measured LMD signal shall be at least ten times greater than the dark level (noise floor) of the LMD, and no greater than 85 % of the saturation level. If the LMD is not sensitive enough to measure a signal, and truncates the readout to zero, then the measurement is not acceptable and a more sensitive LMD is required.

The following requirements are given for the LMD:

- 1) The LMD shall be focused on the image plane of the reference display device as illustrated in Figure 1. The centre of the LMD shall be aligned perpendicularly to the centre of the reference display device, unless stated otherwise.
- 2) The relative uncertainty and repeatability of all the measuring devices shall be maintained by following the instrument supplier's recommended calibration schedule.
- 3) The LMD integration time shall be an integer number of frame periods, synchronized to the frame rate, or the integration time shall be greater than 200 frame periods.
- 4) The angular aperture in Figure 2 shall be ≤ 5°, and the measurement field angle shall be ≤ 1°.
 iTeh STANDARD PREVIEW
- 5) The display shall be operated at its design field frequency. When using separate driving signal equipment to operate a panel, the drive conditions shall be noted in the test report.

Figure 2 – Layout diagram of measurement setup

5 Blur caused by a flexible transparent display

5.1 Purpose

Figure 3a) illustrates an example of a black-to-white test pattern to be displayed in the reference display device. It mimics an object located behind the flexible transparent display. Figure 3b) illustrates an example of the transmitted image of the black-to-white test pattern in Figure 3a) when it is viewed through the flexible transparent display. The black-to-white test pattern in Figure 3a) is free of blur. However, the blur caused by the flexible transparent

IEC TS 62715-5-4:2019 © IEC 2019 - 9 -

display can be noticed in Figure 3b). The purpose of this measurement method is to calculate the degree of blur caused by the flexible transparent display.

5.2 Measuring conditions

For this measurement, the following conditions shall be applied.

- a) Apparatus:
 - 1) LMD that can measure luminance;
 - 2) reference display device to display the black-to-white test pattern behind the DUT;
 - 3) driving power source;
 - 4) driving signal equipment.
- b) Standard measuring environmental conditions:
 - 1) darkroom conditions;
 - 2) standard setup conditions.

Figure 3 – Examples of test pattern with and without blur and luminance measurements

5.3 Measuring method

For this measurement, the following method shall be applied:

1) Allow sufficient time for the reference display device to reach thermal equilibrium. Then set a reference display device to display the black-to-white test pattern illustrated in Figure 3a). The test pattern in Figure 3a) has a black-to-white transition in the vertical direction. Alternatively, a test pattern with a black-to-white transition in the horizontal direction can also be used. The line of the measurement is illustrated as a dotted line in Figure 3a). The background distance along the line of measurement shall be the same because the blur of the see-through image depends on the background distance. The direction of the black-to-white transition of the test pattern shall be selected to maintain the same background distance along the line of measurement. The direction of the black-to-white transition shall be noted in the test report. In addition, the black and white patches within the test pattern can be placed in opposite positions. In addition to the direction of the black-to-white transition, the positions of the black and white patches within the test pattern shall be noted in the test report.