

IEC TS 63156

Edition 1.0 2021-02

TECHNICAL SPECIFICATION

<u>IEC TS 63156:2021</u> https://standards.iteh.ai/catalog/standards/sist/5d2a9e5e-56f7-4bf9-9213-30b54fe8858b/iec-ts-63156-2021

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2021 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland

Tel.: +41 22 919 02 11 info@iec.ch www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore iec ch/csc If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch. IEC TS 63156:2021

IEC online collection - oc.iec.ch

Discover our powerful search engine and read freely all the publications previews. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 000 terminological entries in English and French, with equivalent terms in 18 additional languages. Also known as the International Electrotechnical Vocabulary

https://standards.iteh.ai/catalog/standards/sist/5d2a9e5e-56f7-4bf9-9213

30b54fe8858b/iec-ts-63156-2021

Edition 1.0 2021-02

TECHNICAL SPECIFICATION

Photovoltaic systems + Power conversion equipment performance – Energy evaluation method (standards.iteh.ai)

<u>IEC TS 63156:2021</u> https://standards.iteh.ai/catalog/standards/sist/5d2a9e5e-56f7-4bf9-9213-30b54fe8858b/iec-ts-63156-2021

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 27.160

ISBN 978-2-8322-9303-4

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FOREWORD	3
INTRODUCTION	5
1 Scope	6
2 Normative references	6
3 Terms and definitions	6
4 Workflow of energy conversion efficiency evaluation method	10
4.1 General	10
4.2 Flow of energy conversion efficiency evaluation test	11
4.3 Flow of energy conversion efficiency calculation	12
5 Energy efficiency measurement conditions	13
5.1 Energy efficiency lest circuit	13 1/
6 Static energy conversion efficiency evaluation	14
7 Dynamic energy conversion efficiency evaluation	
8 Weighted energy conversion efficiency calculation	
Annex A (informative) Bate of change of irradiance	
A.1 Analysis of irradiance profile	
A.2 Rate of change of irradiance TANDARD PREVIEW	18
Annex B (informative) Static energy conversion efficiency test sequence	19
Annex C (informative) Dynamic energy conversion efficiency test sequence	20
Annex D (informative) Weighted energy conversion efficiency	22
Bibliography	23
Figure 1 – Flowchart of energy conversion efficiency evaluation test	11
Figure 2 – Flowchart of energy conversion efficiency calculation	12
Figure 3 – Power conversion equipment test circuits	13
Figure A.1 – Example of irradiance profile	17
Figure A.2 – Histogram of the irradiance in Figure A.1 (< 2 $W \cdot m^{-2} \cdot s^{-1}$)	17
Figure A.3 – Histogram of rate of change of irradiance (>2 W•m ⁻² •s ⁻¹)	18
Figure C.1 – Test sequence for fluctuations between medium and high irradiation	
intensities	20
Table 1 Weighted energy conversion efficiency	11
Table A 1 – Weighted factor ratios for E_{1} (π	18
Table A.2. Weighted factor ratios for $L_{n=1}$ to 7	10
Table A.2 – Weighted factor fattos for J_1 , J_2 , etc	10
Table B.1 – Static energy efficiency	19
Table C.1 – Dynamic energy efficiency test with input power from 30 % to 100 %	21
Table C.2 – Dynamic energy efficiency data	21
Iable D.1 – Static energy conversion efficiency	22
Table D.2 – Dynamic energy conversion efficiency	22
Table D.3 – Weighted total conversion efficiency	22

INTERNATIONAL ELECTROTECHNICAL COMMISSION

PHOTOVOLTAIC SYSTEMS – POWER CONVERSION EQUIPMENT PERFORMANCE – ENERGY EVALUATION METHOD

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any enduser. STANDARD PREVIEW
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies ds/sist/5d2a9e5e-56f7-4bf9-9213-
- 6) All users should ensure that they have the latest edition tof this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. In exceptional circumstances, a technical committee may propose the publication of a Technical Specification when

- the required support cannot be obtained for the publication of an International Standard, despite repeated efforts, or
- the subject is still under technical development or where, for any other reason, there is the future but no immediate possibility of an agreement on an International Standard.

Technical Specifications are subject to review within three years of publication to decide whether they can be transformed into International Standards.

IEC TS 63156, which is a Technical Specification, has been prepared by IEC technical committee 82: Solar photovoltaic energy systems.

The text of this Technical Specification is based on the following documents:

Draft TS	Report on voting
82/1755/DTS	82/1801A/RVDTS

Full information on the voting for the approval of this Technical Specification can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>IEC TS 63156:2021</u> https://standards.iteh.ai/catalog/standards/sist/5d2a9e5e-56f7-4bf9-9213-30b54fe8858b/iec-ts-63156-2021

INTRODUCTION

The performance of a photovoltaic power generation system is influenced by various factors, such as meteorological conditions, installation environment (e.g. shade sources, soiling), design, and so on. The performance of a power conversion equipment is one of the significant indices for evaluating the performance of a PV system. IEC 61683 and IEC 62891 describe procedures for measuring the static (constant) conversion efficiency of power conversion equipment and MPPT efficiency, respectively. However, the standards do not define conversion efficiency under dynamic changes in factors such as meteorological changes, installation environment changes or temporal changes.

The CEC efficiency test protocol and EN 50530 define dynamic performance tests and procedures partially, but do not define a calculation procedure for evaluating the quantity of energy produced by a PV system. IEC TS 61724-3 describes a procedure for measuring and analysing the energy production of a specific photovoltaic system relative to the production expected for the same system from actual weather conditions for a certain period, but does not define the procedure for measuring the performance of power conversion equipment under actual environments.

Since there are areas where meteorological conditions, especially irradiance, change greatly and could affect the performance of power conversion equipment, a performance evaluation method under dynamic conditions needs to be defined. This document describes the procedure for evaluating the dynamic performance and energy production efficiency of power conversion equipment in a particular location using site-specific solar profiles. **Teh STANDARD PREVIEW**

(standards.iteh.ai)

<u>IEC TS 63156:2021</u> https://standards.iteh.ai/catalog/standards/sist/5d2a9e5e-56f7-4bf9-9213-30b54fe8858b/iec-ts-63156-2021

PHOTOVOLTAIC SYSTEMS – POWER CONVERSION EQUIPMENT PERFORMANCE – ENERGY EVALUATION METHOD

1 Scope

This document describes the procedure for evaluating the energy conversion performance of stand-alone or grid-connected power conversion equipment (PCE) used in PV systems. This procedure includes the calculation of inverter performance to anticipate the energy yield of PV systems. This evaluation method is based on standard power efficiency calculation procedures for PCE found in IEC 61683 and IEC 62891, but provides additional methods for evaluating the expected overall energy efficiency for a particular location given solar load profiles. This document can be used as the energy evaluation method for PCE in IEC TS 61724-3, which defines a procedure for evaluating a PV system's actual energy production relative to its modeled or expected performance.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. (standards.iteh.ai)

IEC 61683, Photovoltaic systems – Power conditioners – Procedure for measuring efficiency

https://standards.iteh.ai/catalog/standards/sist/5d2a9e5e-56f7-4bf9-9213-IEC TS 61836, Solar photovoltaic energy systems - 3150-2021 definitions and symbols

IEC 62891, Maximum power point tracking efficiency of grid connected photovoltaic inverters

3 Terms and definitions

For the purposes of this document, the terms and definitions given in IEC TS 61836 as well as the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

3.1 irradiance *G* electromagnetic radiated power per unit area

Note 1 to entry: Unit: W•m^{-2.}

3.2 in-plane irradiance *G*₁

total irradiance on the plane of a PV cell or module

Note 1 to entry: Unit: W•m^{-2...}

3.3

rate of change of irradiance

R change in irradiance amount during 1 s

Note 1 to entry: Unit: $W \cdot m^{-2} \cdot s^{-1}$.

3.4

rated input voltage

V_{DC,r}

rated input voltage specified by the manufacturer, to which other data sheet information refers

Note 1 to entry: Unit: V.

3.5

rated input power

P_{DC,r}

rated input power of the power conversion equipment, which can be converted under continuous operating conditions

Note 1 to entry: Unit: W.

3.6

rated output voltage

 $V_{AC,r}$ utility grid voltage to which other data sheet information refers

Note 1 to entry: Unit: V.

3.7

IEC TS 63156:2021

(standards.iteh.ai)

rated output poweirs://standards.iteh.ai/catalog/standards/sist/5d2a9e5e-56f7-4bf9-9213-PAC,r30b54fe8858b/iec-ts-63156-2021

active power that the power conversion equipment can output during continuous operation

Note 1 to entry: Unit: W.

3.8

PV simulator MPP-Power

 $P_{\rm MPP,PVS}$ MPP power provided by the PV simulator

Note 1 to entry: Unit: W.

3.9

input power

 P_{DC}

measured input power of the device under test

Note 1 to entry: Unit: W.

3.10

PV simulator MPP voltage

 $V_{MPP,PVS}$ MPP voltage provided by the PV simulator

Note 1 to entry: Unit: V.

3.11

input voltage

 $V_{\rm DC}$ measured input voltage of the device under test

Note 1 to entry: Unit: V.

3.12 PV simulator MPP current

 $I_{MPP,PVS}$ MPP current provided by the PV simulator

Note 1 to entry: Unit: A.

3.13 input current

 $I_{\rm DC}$ measured input current of the device under test

Note 1 to entry: Unit: A.

3.14 output power

 P_{AC}

measured AC output power of the device under test **PREVIEW**

Note 1 to entry: Unit: W.

3.15 output volta

(standards.iteh.ai)

- 8 -

output voltageIEC TS 63156:2021 V_{AC} https://standards.iteh.ai/catalog/standards/sist/5d2a9e5e-56f7-4bf9-9213-measured AC voltage of the device⁰bfder⁸fest^{icc-ts-63156-2021}

Note 1 to entry: Unit: V.

3.16 output current

 I_{AC} measured AC output current of the device under test

Note 1 to entry: Unit: A.

3.17 MPPT efficiency

 η_{MPPT}

ratio of the energy drawn by the device under test within a defined measuring period T_{M} to the energy provided theoretically by the PV simulator at the maximum power point (MPP):

$$\eta_{\text{MPPT}} = \frac{\int_{T_{\text{M}}}^{T_{\text{M}}} P_{\text{DC}}(t) dt}{\int_{0}^{T_{\text{M}}} P_{\text{MPP}}(t) dt}$$
(1)

where

 η_{MPPT} is MPPT efficiency;

- $P_{\text{DC}}(t)$ is the instantaneous value of the power drawn by the device under test, in kW;
- $P_{\text{MPP}}(t)$ is the instantaneous value of the MPP power provided theoretically by the PV simulator, in kW.

Note 1 to entry: Unit: dimensionless, usually expressed as a percentage, %.

3.18

energy conversion efficiency

 η_{CONV}

ratio of the energy delivered by the device under test at the AC terminal within a defined measuring period $T_{\rm M}$ to the energy received by the device under test at the DC terminal:

where

- η_{conv} is the energy conversion efficiency;
- $P_{AC}(t)$ is the instantaneous value of the delivered power at the AC terminal of the device under test, in kw:n STANDARD PREVIEW
- $P_{\text{DC}}(t)$ is the instantaneous value of the received power at the DC terminal of the device under test, in kW.

Note 1 to entry: Unit: dimensionless, usually expressed as a percentage, %.

https://standards.iteh.ai/catalog/standards/sist/5d2a9e5e-56f7-4bf9-9213-

30b54fe8858b/iec-ts-63156-2021

total energy conversion efficiency

 η_{t}

3.19

product of the energy conversion efficiency and MPPT efficiency:

$$\eta_{\rm t} = \eta_{\rm CONV} \times \eta_{\rm MPPT} \tag{3}$$

where

 η_{t} is the total energy conversion efficiency.

Note 1 to entry: Unit: dimensionless, usually expressed as a percentage, %.

3.20

weighted static energy conversion efficiency

 η_{s}

efficiency calculated by using a ratio of irradiance and the results of static performance evaluation:

$$\eta_{\rm s} = F_1 \eta_{\rm t1} + F_2 \eta_{\rm t2} + \dots + F_{\rm n} \eta_{\rm tn} \tag{4}$$

where

 $\eta_{t1}, \eta_{t2} \cdots \eta_{tn}$ are the total energy conversion efficiency values at rated power values of IEC 61683 defined;

 $F_1, F_2, \cdots F_n$ are the weighting factors of each power level that are defined from the distribution rate of the static state data at the location where the PV system is installed.