This document is not an ASTM standard and is intended only to provide the user of an ASTM standard an indication of what changes have been made to the previous version. Because it may not be technically possible to adequately depict all changes accurately, ASTM recommends that users consult prior editions as appropriate. In all cases only the current version of the standard as published by ASTM is to be considered the official document.

Designation: D4127 - 18 D4127 - 18a

Standard Terminology Used with Ion-Selective Electrodes¹

This standard is issued under the fixed designation D4127; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope*

1.1 This terminology covers those terms recommended by the International Union of Pure and Applied Chemistry (IUPAC),² and is intended to provide guidance in the use of ion-selective electrodes for analytical measurement of species in water, wastewater, and brines.

1.2 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 *ASTM Standards*:³ D1129 Terminology Relating to Water

3. Terminology

3.1 Definitions:

3.1.1 For definitions of terms used in this standard, refer to Terminology D1129.

3.2 Definitions of Terms Relevant to Ion-Selective Electrode Technology:

acid error, *n*—in very acid solutions, the activity of water is reduced (less than unity) causing a non-Nernstian response in glass electrodes.

Document Preview

DISCUSSION-

A positive error in the pH reading results.

<u>ASTM D4127-18a</u>

activity, *n*—the thermodynamically effective concentration of a free ion in solution.

DISCUSSION-

In dilute solutions, ionic activity, and concentration are practically identical, but in solutions of high ionic strength, or in the presence of complexing agents, activity may differ significantly from concentration. Ionic activity, not concentration, determines both the rate and the extent of chemical reactions.

activity coefficient, n—a factor, γ , that relates activity, A, to the concentration, C of a species in solution:

 $A = \gamma C$

DISCUSSION-

The activity coefficient is dependent on the ionic strength of the solution. Ions of similar size and charge have similar activity coefficients.

¹ This terminology is under the jurisdiction of ASTM Committee D19 on Water and is the direct responsibility of Subcommittee D19.05 on Inorganic Constituents in Water. Current edition approved Feb. 1, 2018 May 1, 2018. Published May 2018June 2018. Originally approved in 1982. Last previous edition approved in 20122018 as D4127-12:D4127-18. DOI: 10.1520/D4127-18:10.1520/D4127-18a.

*A Summary of Changes section appears at the end of this standard

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States

² Recommendations for Nomenclature of Ion-Selective Electrodes, IUPAC Commission on Analytical Nomenclature, Pergamon Press, Oxford, 1976.

³ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

🕼 D4127 – 18a

alkaline error, *n*—in alkaline solutions, where hydrogen ion activity becomes very small, some glass electrodes respond to other cations, such as sodium.

DISCUSSION-

A negative error in the pH reading results. By changing the composition of the glass, the affinity of the glass for sodium ion can be reduced. Such electrodes are known as lithium glass, high-pH, or full-range electrodes.

analate, n-the sample being analyzed; used in the terms "analate addition" and "analate subtraction."

DISCUSSION-

This term differs from the term "analyte," which describes the chemical species of interest in an analytical test.

asymmetry potential, *n*—the potential across a glass pH electrode membrane when the inside and outside of the membrane are in contact with solutions of identical pH.

DISCUSSION-

This term has also been used to define the observed potential differences between identical electrode pairs placed in identical solutions.

calibration curve, *n*—a plot of the potential (emf or E) of a given ion-selective electrode cell assembly (ion-selective electrode combined with an identified reference electrode) versus the logarithm of the ionic activity (or concentration) of a given species.

DISCUSSION-

For uniformity, it is recommended that the potential be plotted on the ordinate (vertical axis) with the more positive potentials at the top of the graph and that pa_A (–log activity of the species measured, A) or pc_A (–log concentration of species measured, A) be plotted on the abscissa (horizontal axis) with increasing activity to the right. See Fig. 1 and Fig. 2. Region I of Fig. 1 represents the segment of the curve where the potential no longer changes in response to changes of the measured species activity and the electrode no longer demonstrates Nernstian response.

IUPAC

activity standard, *n*—a standardizing solution whose value is reported in terms of ionic activity.

DISCUSSION-

ASTM D4127-18a

If the electrode is calibrated using activity standards, the activity of the free, unbound ion in the sample is determined. astm-d4127-18a

concentration standard, *n*—a standardizing solution whose value is reported in terms of total concentration of the ion of interest.

DISCUSSION-

If the electrode is calibrated using pure-concentration standards and measurements made on untreated samples, results must be corrected for the sample ionic strength and the presence of complexing agents. More commonly, a reagent is added to all standards and samples before measurement in order to fix the ionic strength, thus avoiding the need for correction.

combination electrode, *n*—an electrochemical apparatus that incorporates an ion-selective electrode and a reference electrode in a single assembly thereby avoiding the need for a separate reference electrode.

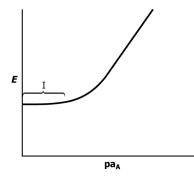


FIG. 1 Example Response Curve (log activity on the horizontal axis)

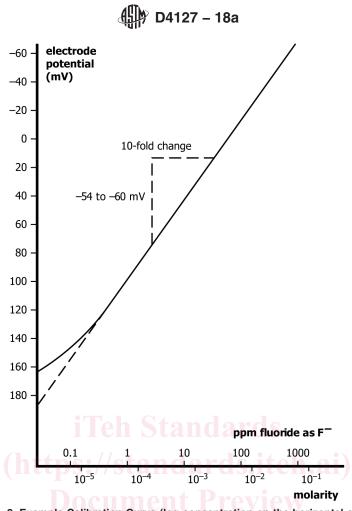


FIG. 2 Example Calibration Curve (log concentration on the horizontal axis)

concentration, *n*—the actual amount of a substance in a given volume of solution.

https://standards.iteh.ai/catalog/standards/sist/5c3bcbfc-40e5-4b76-991f-1d7a92a126c0/astm-d4127-18a Discussion—

When measuring ionic concentrations by electrode, a distinction is made between the concentration of the free, unbound ion, and total concentration that includes ions bound to complexing agents.

dissociation constant, *n*—a number indicating the extent to which a substance dissociates in solution.

DISCUSSION-

For a simple two-species complex AB, the constant is given by the product of the molar concentrations of A and of B divided by the molar concentrations of the undissociated species AB. For example, with hydrofluoric acid:

$$([H^+][F^-])/([HF]) = K = 6.7 \times 10^{-4} \text{ at } 25^{\circ}\text{C}$$

The smaller the value of K, the less the complex is dissociated. K varies with temperature, ionic strength, and the nature of the solvent.

drift, *n*—this is the slow nonrandom change with time in the potential (emf) of an ion-selective electrode cell assembly maintained in a solution of constant composition and temperature.

electrode life, *n*—the length of time that an electrode functions usefully.

DISCUSSION-

Life-time of solid-state and glass electrodes is limited by mechanical failure of the electrode body or chemical attack on the sensing membrane, and can range from a few days, if the electrode is used continuously in hot or abrasive flowing streams, to several years under normal laboratory conditions. The life-time of liquid membrane electrodes is limited by loss of ion exchanger with use, and is generally 1 to 6 months.

electrode pair, *n*—a sensing electrode and a reference electrode; the reference electrode may be separate or combined in one body with the sensing electrode.

electrolyte, *n*—a substance that ionizes in aqueous solution; also, a solution containing ions.

DISCUSSION-

Weak electrolytes are only slightly dissociated into ions in solution (acetic acid), and strong electrolytes are highly dissociated (HCl, NaCl).

equitransference, *n*—equal diffusion rates of the positively and negatively charged ions of an electrolyte across a liquid junction.

equitransferent filling solution, *n*—a reference electrode filling solution in which the diffusion rates of negatively and positively charged ions are equal.

filling solution, *n*—the solution inside a sensing or reference electrode that is replenished periodically.

DISCUSSION-

Solutions that are permanently sealed within the electrode (like the buffer inside a pH electrode) are usually called internal reference solutions to differentiate them from filling solutions.


internal filling solution of sensing electrode, *n*—in liquid membrane electrodes, an aqueous internal filling solution contacts the internal reference element and the membrane, which is saturated with ion exchanger.

DISCUSSION-

The filling solution normally contains a fixed level of chloride and of the ion for which the electrode was designed; the concentration of this ion determines the zero potential point of the electrode. In addition, the filling solution is saturated with silver chloride to prevent the silver chloride of the internal reference element from dissolving.

reference electrode filling solution, *n*—a concentrated salt solution contacting the internal reference element and the sample solution.

DISCUSSION-

flowthrough electrodes, *n*—ion-selective and reference electrodes designed for anaerobic measurements.

DISCUSSION-

The two electrodes are connected by plastic tubing to a syringe or peristaltic pump, and the sample is pumped through the electrodes at a constant rate. Ion-selective electrodes can be made in a flow through configuration for the measurement of very small samples (0.2 to 0.3 mL) or samples that must be measured anaerobically.

Gran's plots, n—a method of plotting apparent concentration (as derived from the electrode potential) versus the volume of reagent added to the sample.

DISCUSSION-

Gran's plots are especially useful for plotting titrations that would give poor end-point breaks if plotted conventionally. These plots can also be used to determine concentration by known addition with greater precision than can be obtained by a single addition measurement.

hysteresis (electrode memory), *n*—hysteresis is said to have occurred if, after the concentration has been changed and restored to its original value, there is a different potential observed.

DISCUSSION-

The reproducibility of the electrode will consequently be poor. The systematic error is generally in the direction of the concentration of the solution in which the electrode was previously immersed.

🕼 D4127 – 18a

interfering substance, *n*—any species, other than the ion being measured, whose presence in the sample solution affects the measured potential of a cell.

DISCUSSION-

Interfering substances fall into two classes: "electrode" interferences and "method" interferences. Examples of the first class would be those substances that give a similar response to the ion being measured and whose presence generally results in an apparent increase in the activity (or concentration) of the ion to be determined (for example, Na^+ for the Ca^{++} electrode), those species that interact with the membrane so as to change its chemical composition (that is, organic solvents for the liquid or poly(vinyl chloride) (PVC) membrane electrodes) or electrolytes present at a high concentration giving rise to appreciable liquid-junction potentials. The second class is a substance that interacts with the ion being measured so as to decrease its activity or apparent concentration, but where the electrode continues to report the true activity (for example, CN^- present in the measurement of Ag^+).

internal reference electrode, *n*—a reference electrode that is contained inside an ion-selective electrode assembly.

DISCUSSION-

The system frequently consists of a silver-silver chloride electrode in contact with an appropriate solution containing chloride and a fixed concentration of the ion for which the membrane is selective.

ion-selective electrode, *n*—an electrochemical sensors, the potentials of which is linearly dependent on the logarithm of the activity of a given ion in solution.

DISCUSSION-

Such devices are distinct from systems that involve redox reactions. The term *ion-specific electrode* is not recommended. The term *specific* implies that the electrode does not respond to additional ions. Since no electrode is truly specific for one ion, the term *ion-selective* is recommended as more appropriate. *Selective ion-sensitive electrode* is a little-used term to describe an ion-selective electrode.

ionic strength, *n*—the weighted concentration of ions in solution, computed by multiplying the concentration (*c*) of each ion in solution by the corresponding square of the charge (*Z*) on the ion, summing and dividing by 2: ionic strength = $(\frac{1}{2})\sum_{C} Z_{C}^{2}$.

DISCUSSION-

Conductivity measurements give a rough estimate of ionic strength. The ionic strength (and to a lesser extent, the concentration of nonionic dissolved species) largely determines the activity coefficient of each ion in the solution.

ionic-strength adjustment buffer, *n*—a pH buffered solution of high ionic strength added to samples and calibration solutions before measurement in order to achieve identical ionic strength and hydrogen ion activity. 2120c0/astm-d4127-18a

DISCUSSION-

In addition, complexing agents and other components are often added to minimize the effects of certain interferences.

isopotential point, *n*—for a cell containing an ion-selective electrode and a reference electrode there is often a particular activity of the ion concerned for which the potential of the cell is independent of temperature.

DISCUSSION-

That activity, and the corresponding potential, define the isopotential point. The identity of the reference electrode, and the composition of the filling solution of the measuring electrode, must be specified.

junction potential, *n*—for the total observed potential developed between the sensing and reference electrodes, the portion that is formed at the liquid/liquid junction between the reference electrode filling solution and the sample solution.

DISCUSSION-

For accuracy, the junction potential should be as low and as constant as possible despite variations in the composition of the sample solution. Reference electrode filling solutions should be judiciously chosen to minimize liquid junction potential.

mean ionic activity coefficient, *n*—for a salt that is composed of two monovalent ions, the geometric mean of the individual ionic activity coefficients.

DISCUSSION-

(The geometric mean is obtained, in this case, by multiplying the two individual ionic activity coefficients and then taking the square root.) This mean coefficient is important because, unlike individual ionic activity coefficients, it can be measured by a variety of techniques, such as freezing point depression and vapor pressure, as well as by paired sensing electrodes.

- **membrane**, *n*—a thin space of material covering a structure of separating solutions and permitting selection transport of a chemical species between the two solutions.
- **liquid ion-exchange electrode membrane**, *n*—a porous plastic disk, permeable to the ion exchanger, and impermeable to water, that allows the ion exchanger to contact the sample solution and separates the internal filling solution from the sample.
- gas electrode membrane, *n*—a plastic film, permeable to gases but impermeable to water, separating the electrode from the simple solution.
- **crystal membrane or solid-state electrode membrane,** *n*—a thin single or mixed crystal that is an ionic conductor and that separates the internal reference element or internal reference solution from the sample solution.

Nernst equation, *n*—a mathematical description of electrode behavior:

$$E = E_x + 2.3 RT/zF\log A$$

where:

E	= total potential (in volts) developed between the sensing and reference electrodes
E_x	= potential (in volts) dependent on the choice of reference electrodes, V,
RT/zF	= Nernst factor,
R	= gas constants, 8.3143 V C/K·mol,
F	= Faraday constant, 96 485 C/mol,
z	= charge on the ion, including sign,
Т	= absolute temperature in Kelvin, and the Standards
Α	= activity of the ion to which the electrode is responding.
Nernst factor, <i>n</i> —in the Nernst equation, the term $2.3RT/zF$, which is equal (at $T = 25^{\circ}$ C) to 59.16 mV when $z = 1$ and 29.58 mV when $z = 2$, and which includes the sign of the charge on the ion in the term <i>z</i> .	

DISCUSSION-

The Nernst factor varies with temperature. This factor is often referred to as the *electrode slope*.

Nernstian response, *n*—electrode behavior which conforms to the Nernst equation. For example, when a plot of the potential of such an electrode in conjunction with a reference electrode versus the logarithm of the ionic activity of a given measured species (a_A) is linear with a slope of $2.303 \times 10^3 RT/z_A^F$ mV/decade (59.16/ z_A mV per unit of pa_A at 25°C).

pH electrode, *n*—an ion-selective electrode, made of glass, that responds to hydrogen ion activity.

DISCUSSION-

Wide-range pH electrodes function over the activity range $1 M H^+$ (pH 0) to $10^{-14} M H^+$ (pH 14). pH electrodes may be subject to "acid error" in strongly acidic solutions and are also subject to "alkaline error" caused by response to sodium or other cations in basic solutions.

DISCUSSION-

An ISFET (Ion-Selective Field Effect Transistor) pH electrode uses a pH sensitive metal oxide layer over the gate of a transistor that is compactly packaged with corrosion-resistant materials and does not contain glass, making it particularly applicable in food and life sciences industries.

DISCUSSION-

An ISFET pH electrode may have negligible alkaline error. An ISFET pH electrode is usually combined with a reference electrode and a temperature sensor into a single probe.

pH/mV meter, *n*—an instrument that measures and displays the voltage developed between a sensing electrode and a reference electrode placed in a solution, and can convert the voltage developed by a pH electrode to a corresponding pH value.

analog pH/mV meter, *n*—an instrument that displays voltages, pH units, or other concentration units by means of a needle pointer and scale.