

Edition 2.0 2020-01 REDLINE VERSION

INTERNATIONAL STANDARD

Radiation protection instrumentation – Passive integrating Dosimetry systems with integrating passive detectors for personal individual, workplace and environmental monitoring of photon and beta radiation

Document Preview

IEC 62387:2020

https://standards.iteh.ai/catalog/standards/iec/355f0b34-d1ca-4cd2-8eb3-dba13f7830a0/iec-62387-2020

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2020 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland

Tel.: +41 22 919 02 11 info@iec.ch www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

Centre: sales@iec.ch.

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 000 terminological entries in English and French, with equivalent terms in 16 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary

67 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR. IS. IUCII. a

Edition 2.0 2020-01 REDLINE VERSION

INTERNATIONAL STANDARD

Radiation protection instrumentation – Passive integrating Dosimetry systems with integrating passive detectors for personal individual, workplace and environmental monitoring of photon and beta radiation

Document Preview

IEC 62387:2020

https://standards.iteh.ai/catalog/standards/iec/355f0b34-d1ca-4cd2-8eb3-dba13f7830a0/iec-62387-2020

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 13.280

ISBN 978-2-8322-5317-5

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FC	DREWO	RD	8
IN	TRODU	ICTION	. 10
1	Scop	e	.11
2	Norm	native references	. 12
3	Term	s and definitions	. 13
4	Units	and symbols	.24
5	Gene	eral test procedures	.24
	5.1	Basic test procedures	.24
	5.1.1	Instructions for use	.24
	5.1.2	Nature of tests	.24
	5.1.3	Reference conditions and standard test conditions	.25
	5.1.4	Production of reference radiation	.25
	5.1.5	Choice of phantom for the purpose of testing	.25
	5.1.6	Position of dosemeter for the purpose of testing	.25
	5.2	Test procedures to be considered for every test	.25
	5.2.1	Number of dosemeters used for each test	.25
	5.2.2	Consideration of the uncertainty of the conventional quantity value	.25
	5.2.3	Consideration of non-linearity	.25
	5.2.4	Consideration of natural background radiation	.26
	5.2.5	Consideration of several detectors or signals in a dosemeter	.26
6	Dorfe	Periorning the tests enciently	.20
7	Cana	bility of a designetive system	.20
1	Capa	IEC 62387:2020	.28
	/.1 /standa	General	.28
	7.2 7.2	Pated ranges of the influence quantities	.20 29
	7.3 7.4	Maximum rated measurement time t	.20
	7.4	Reusability	28
	7.6	Model function	28
	7.7	Example for the capabilities of a dosimetry system	.29
8	Requ	irements for the design of the dosimetry system	.29
	8.1	General	.29
	8.2	Indication of the dose value (dosimetry system)	.29
	8.3	Assignment of the dose value to the dosemeter (dosimetry system)	.30
	8.4	Information given on the devices (reader and dosemeter)	.30
	8.5	Retention and removal of radioactive contamination (dosemeter)	.30
	8.6	Algorithm to evaluate the indicated value (dosimetry system)	.30
	8.7	Use of dosemeters in mixed radiation fields (dosimetry system)	.31
9	Instru	uction manual	.31
	9.1	General	.31
	9.2	Specification of the technical data	.31
10	Softv	vare, data and interfaces of the dosimetry system	.32
	10.1	General	. 32
	10.2	Design and structure of the software	.33
	10.2.	1 Requirements	. 33

10.2.2	Method of test	33
10.3 Ider	tification of the software	33
10.3.1	Requirements	33
10.3.2	Method of test	33
10.4 Auth	nenticity of the software and the presentation of results	33
10.4.1	Requirements	33
10.4.2	Method of test	
10.5 Alar	m and stop of system operation under abnormal operating conditions	
10.5.1	Requirements	
10.5.2	Method of test	
10.6 Con	trol of input data by the dosimetry system	35
10.6.1	Requirements	35
10.6.2	Method of test	35
10.7 Stor	age of data	35
10.7.1	Requirements	
10.7.2	Method of test	
10.8 Trai	nsmission of data	
10.8.1	Requirements	
10.8.2	Method of test	
10.9 Har	dware interfaces and software interfaces	
10.9.1	Requirements Teh Standards	
10.9.2	Method of test	
10 10 Doc	umentation for the software test	37
10 10 1	Requirements.	
10 10 2	Method of test	
11 Radiation	performance requirements and tests (dosimetry system)	
11.1 Con	orol	
11.2 Non		
11.3 NON	-Intearity	
11.3.1	Requirements	
11.3.2	Method of test	
11.3.3	Interpretation of results	
11.4 Ove	rioad characteristics, after-effects, and reusability	
11.4.1	Requirements	
11.4.2	Method of test	
11.4.3	Interpretation of the results	41
11.5 Rad	lation energy and angle of incidence for $H_p(10)$ or $H^*(10)$ dosemeters	
11.5.1	Photon radiation	
11.5.2	Beta radiation	
11.6 Rad	iation energy and angle of incidence for $H_p(3)$ or $H'(3)$ dosemeters	44
11.6.1	Photon radiation	
11.6.2	Beta radiation	46
11.7 Rad	iation energy and angle of incidence for $H_{p}(0,07)$ or $H'(0,07)$ dosemeters	47
11.7.1	Photon radiation	47
11.7.2	Beta radiation	49
11.8 Ove	r-response indication due to radiation incidence incident from the side of $L(40)$ $H(2)$ or $H(0,07)$ decomptor	E0
	$n_p(10), n_p(3)$ of $n_p(0,07)$ doserierer	
11.0.1	Nethod of toot	5U
11.ŏ.Z		

I

11.8.3	Interpretation of the results	51
11.9 In	dication of the presence of beta dose for $H_p(0,07)$ whole body dosemeters	51
12 Respon	se to mixed irradiations (dosimetry system)	51
12.1 Re	equirements	51
12.2 M	ethod of test	52
12.2.1	General	52
12.2.2	Preparation of the test	52
12.2.3	Practical test	52
12.3 In	erpretation of the results	53
13 Environ	mental performance requirements and tests	53
13.1 Ge	eneral	53
13.1.1	General requirement	53
13.1.2	General method of test	53
13.2 Ar	nbient temperature and relative humidity (dosemeter)	54
13.2.1	General	54
13.2.2	Requirements	54
13.2.3	Method of test	54
13.2.4	Interpretation of the results	55
13.3 Li	ght exposure (dosemeter)	55
13.3.1	General	55
13.3.2	Requirements	55
13.3.3	Method of test	55
13.3.4	Interpretation of the results	56
13.4 Do	ose build-up, fading and self-irradiation , and response to natural radiation	
(d)	osemeter)	56
13.4.1		50
13.4.2		
12.4.3 s	Interpretation of the results	57
13.4.4	Interpretation of the results	
12.0 00	aling (dosemeter).	30 50
12.6 1		30 50
13.0.1	Bequirements	30 59
13.0.2	Nequirements	59
13.0.3	Interpretation of the results	59
13.0.4 13.7 Δr	nhient temperature (reader)	50
13.7 A	General	50
13.7.1	Bequirements	50
13.7.2	Method of test	50
13.7.3	Interpretation of the results	50
13.7.4	abt exposure (reader)	60
13.8.1	General	60
13.8.2	Requirements	60
13.8.3	Method of test	60
13.8.4	Interpretation of the results	60
13.9 Pr	imary power supply (reader)	61
13.9.1	General	61
13.9.2	Requirements	61
13.9.3	Method of test	61
		···· • •

l

13.9.4 Interpretation of the results	61
14 Electromagnetic performance requirements and tests (dosimetry system)	62
14.1 General	62
14.2 Requirements	62
14.3 Method of test	62
14.4 Interpretation of the results	63
15 Mechanical performance requirements and tests	63
15.1 General requirement	63
15.2 Drop (dosemeter)	64
15.2.1 Requirements	64
15.2.2 Method of test	64
15.2.3 Interpretation of the results	64
16 Documentation	64
16.1 Type test report	64
16.2 Certificate issued by the laboratory performing the type test	65
Annex A (normative) Confidence limits	79
A.1 General	79
A.2 Confidence interval for the mean, \overline{x}	80
A.3 Confidence interval for a combined quantity	80
Annex B (informative) Causal connection between readout signals, indicated value and measured value	82
Annex C (informative) Overview of the necessary actions that have to be performed	83
Anney D (informative) Usage categories of passive desemptors	00
Annex E.D. (informative) Uncertainty of decimatry systems	
Annex E (informative) Oncertainty of dosinetry systems	00
Annex F (informative) Conversion coefficients $h_{pK}(3;\alpha)$, $h_{pK}(0,07;\alpha)$, and $h_{K}(0,07;\alpha)$ from air kerma, K_{a} , to the dose equivalent $H_{p}(3)$, $H_{p}(0,07)$, and $H'(0,07)$, respectively,	
Annex G (informative) Conversion coefficients $k_{pD}(0,07;source;\alpha)$ and $k_{pD}(3;source;\alpha)$ from personal absorbed dose in 0,07 mm depth, $D_p(0,07)$, to the dose equivalent $H_{a}(0,07)$ and $H_{a}(3)$, respectively, for radiation gualities defined in LSO 6980-1	
Annex E (informative) Conversion coefficients $h_{pD}(0,07;source;\alpha)$, $h'_D(0,07;source;\alpha)$, $h_{pD}(3;source;\alpha)$, and $h'_D(3;source;\alpha)$ from personal absorbed dose in 0,07 mm depth, $D_p(0,07)$, to the corresponding dose equivalent quantities for radiation qualities defined in ISO 6980-1.	89
Annex H F (informative) Computational method of test for mixed irradiations	93
Bibliography	95
Figure 1 – Stepwise irradiation of an <i>H*</i> (10) dosemeter at 90° angle of incidence Figure A.1 – Test for confidence interval	43 79
Figure B.1 – Data evaluation in dosimetry systems	82
Figure F.1 – Flow chart of a computer program to perform tests according to 12.2	94
Table 1 – Mandatory and maximum energy ranges covered by this document	11

Table 4 – Angular irradiations Angles of incidence of irradiation for $H_p(3)$ and $H'(3)$ dosemeters	45
Table 5 – Angles of incidence of irradiation for $H_{p}(0,07)$ and $H'(0,07)$ dosemeters	
Table 6 – Symbols	66
Table 7 – Reference conditions and standard test conditions	69
Table 8 – Performance requirements for <i>H</i> p(10) dosemeters	70
Table 9 – Performance requirements for $H_{p}(3)$ dosemeters	71
Table 10 – Performance requirements for $H_p(0,07)$ dosemeters	72
Table 11 – Performance requirements for $H^*(10)$ dosemeters	73
Table 12 – Performance requirements for H'(3) dosemeters	74
Table 13 – Performance requirements for H'(0,07) dosemeters	75
Table 14 – Environmental performance requirements for dosemeters and readers	76
Table 15 – Electromagnetic disturbance performance requirements for dosimetry systems according to Clause 14	77
Table 16 – Mechanical disturbances performance requirements for dosemeters	78
Table 17 – List of abbreviations	78
Table A.1 – Student's t-value for a double sided 95 % confidence interval	80
Table C.1 – Schedule for a type test of a dosemeter for $H_p(10)$ fulfilling the requirements within the mandatory ranges	83
Table D.1 – Usage categories of passive dosemeters	<u></u>
Table F.1 – Conversion coefficients $h_{pK}(3;N,\alpha)$ from air kerma, K_{a} , to the dose equivalent $H_{p}(3)$ for radiation qualities defined in ISO 4037-1 and for the slab phantom, reference distance 2 m	
Table F.2 – Conversion coefficients $h_{pK}(3;S,\alpha)$ and $h_{pK}(3;R,\alpha)$ from air kerma, K_{a} , to the dose equivalent $H_{p}(3)$ for radiation qualities defined in ISO 4037-1 and for the slab phantom	
Table F.3 Conversion coefficients $h_{pK}(0,07;S,\alpha)$ and $h_{pK}(0,07;R,\alpha)$ from air kerma, K_{a} , to the dose equivalent $H_{p}(0,07)$ for radiation qualities defined in ISO 4037-1 and for the rod, pillar, and slab phantom	2387-202
Table F.4 – Conversion coefficients h' _Κ (0,07;N,α), h' _Κ (0,07;S,α), and h' _Κ (0,07;R,α) from air kerma, K _a , to H'(0,07) for radiation qualities defined in ISO 4037-1	
Table G.1 – Measured conversion coefficients $h_{pD}(3;source;\alpha)$ from personal absorbed dose in 0,07 mm depth, $D_p(0,07)$, to the dose equivalent $H_p(3)$ for the slab phantom for radiation qualities defined in ISO 6980-1	
Table G.2 – Measured conversion coefficients $h_{pD}(0,07;source;\alpha)$ from personal	
absorbed dose in 0,07 mm depth, <i>D</i> _P (0,07), to the dose equivalent <i>H</i> _P (0,07) for the slab phantom for radiation qualities defined in ISO 6980-1	1
absorbed dose in 0,07 mm depth, $D_{p}(0,07)$, to the dose equivalent $H_{p}(0,07)$ for the slab phantom for radiation qualities defined in ISO 6980-1 Table E.1 – Conversion coefficients $h_{pD}(0,07;source;\alpha)_{slab}$ from personal absorbed dose in 0,07 mm depth, $D_{p}(0,07)$, to the dose equivalent $H_{p}(0,07)$ for the slab phantom for radiation qualities defined in ISO 6980-1	
absorbed dose in 0,07 mm depth, $D_{p}(0,07)$, to the dose equivalent $H_{p}(0,07)$ for the slab phantom for radiation qualities defined in ISO 6980-1 Table E.1 – Conversion coefficients $h_{pD}(0,07;source;\alpha)_{slab}$ from personal absorbed dose in 0,07 mm depth, $D_{p}(0,07)$, to the dose equivalent $H_{p}(0,07)$ for the slab phantom for radiation qualities defined in ISO 6980-1 Table E.2 – Conversion coefficients $h_{pD}(0,07;source;\alpha)_{rod}$ from personal absorbed dose in 0,07 mm depth, $D_{p}(0,07)$, to the dose equivalent $H_{p}(0,07)$ for the rod phantom for radiation qualities defined in ISO 6980-1	
absorbed dose in 0,07 mm depth, $D_p(0,07)$, to the dose equivalent $H_p(0,07)$ for the slab phantom for radiation qualities defined in ISO 6980-1 Table E.1 – Conversion coefficients $h_{pD}(0,07;source;\alpha)_{slab}$ from personal absorbed dose in 0,07 mm depth, $D_p(0,07)$, to the dose equivalent $H_p(0,07)$ for the slab phantom for radiation qualities defined in ISO 6980-1 Table E.2 – Conversion coefficients $h_{pD}(0,07;source;\alpha)_{rod}$ from personal absorbed dose in 0,07 mm depth, $D_p(0,07)$, to the dose equivalent $H_p(0,07)$ for the rod phantom for radiation qualities defined in ISO 6980-1 Table E.2 – Conversion coefficients $h_{pD}(0,07;source;\alpha)_{rod}$ from personal absorbed dose in 0,07 mm depth, $D_p(0,07)$, to the dose equivalent $H_p(0,07)$ for the rod phantom for radiation qualities defined in ISO 6980-1	90

I

Table E.5 – Conversion coefficients $h'_D(3;source;\alpha)$ from personal absorbed dose in	
0,07 mm depth, $D_{\rm p}(0,07)$, to the dose equivalent $H'(3)$ for the ICRU sphere for	
radiation qualities defined in ISO 6980-1	92
Table F.1 – Example of dosemeter response table and range limits	93

iTeh Standards (https://standards.iteh.ai) Document Preview

IEC 62387:2020

https://standards.iteh.ai/catalog/standards/iec/355f0b34-d1ca-4cd2-8eb3-dba13f7830a0/iec-62387-2020

- 8 -

INTERNATIONAL ELECTROTECHNICAL COMMISSION

RADIATION PROTECTION INSTRUMENTATION – PASSIVE INTEGRATING DOSIMETRY SYSTEMS WITH INTEGRATING PASSIVE DETECTORS FOR <u>PERSONAL</u> INDIVIDUAL, WORKPLACE AND ENVIRONMENTAL MONITORING OF PHOTON AND BETA RADIATION

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any

services carried out by independent certification bodies. <u>All ca-4cd2-8eb3-dba1317830a0/jec-62387-2020</u>

- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

This redline version of the official IEC Standard allows the user to identify the changes made to the previous edition. A vertical bar appears in the margin wherever a change has been made. Additions are in green text, deletions are in strikethrough red text.

International Standard IEC 62387 has been prepared by subcommittee 45B: Radiation protection instrumentation, of IEC technical committee 45: Nuclear instrumentation.

This second edition cancels and replaces the first edition of IEC 62387 published in 2012. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- Modification of title.
- Addition of performance requirements for dosemeters to measure H'(3) for both photon and beta radiation.
- Adoption of the cylinder instead of the slab phantom for the quantity $H_{\rm p}(3)$.
- Correction and clarification of several subclauses to obtain a better applicability.

The text of this standard is based on the following documents:

FDIS	Report on voting	
45B/945/FDIS	45B/954/RVD	

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

reconfirmed,

EC 62387:2020

https://withdrawn.eh.ai/catalog/standards/iec/355f0b34-d1ca-4cd2-8eb3-dba13f7830a0/iec-62387-2020

- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

INTRODUCTION

- 10 -

A dosimetry system may consist of the following elements:

- a) a passive device, referred to herein as a *detector*, which, after the exposure to radiation, stores a signal for use in measuring one or more quantities of the incident radiation field;
- b) a "dosemeter", that incorporates some means of identification and contains one or more detectors and may contain electronic components, e.g. for the readout (e.g., in a direct ion storage (DIS) dosemeter);
- c) a "reader" which is used to readout the stored information (signal) from the detector, in order to determine the radiation dose;
- a "computer" with appropriate "software" to control the reader, store the signals transmitted from the reader, calculate, display and store the evaluated dose in the form of an electronic file or paper copy;
- e) "additional equipment" and documented procedures (instruction manual) for performing associated processes such as deleting stored dose information, cleaning dosemeters, or those needed to ensure the effectiveness of the whole system.

iTeh Standards (https://standards.iteh.ai) Document Preview

IEC 62387:2020

https://standards.iteh.ai/catalog/standards/iec/355f0b34-d1ca-4cd2-8eb3-dba13f7830a0/iec-62387-2020

RADIATION PROTECTION INSTRUMENTATION – PASSIVE INTEGRATING DOSIMETRY SYSTEMS WITH INTEGRATING PASSIVE DETECTORS FOR PERSONAL INDIVIDUAL, WORKPLACE AND ENVIRONMENTAL MONITORING OF PHOTON AND BETA RADIATION

Scope 1

This document applies to all kinds of passive dosimetry systems that are used for measuring:

- the personal dose equivalent $H_{\rm p}(10)$ (for individual whole body-dosimetry monitoring),
- the personal dose equivalent $H_p(3)$ (for individual eye lens-dosimetry monitoring),
- the personal dose equivalent $H_{n}(0,07)$ (for both individual whole body skin and local skin for extremity dosimetry monitoring),
- the ambient dose equivalent $H^*(10)$ (for workplace and environmental dosimetry monitoring),
- the directional dose equivalent H'(3) (for workplace and environmental monitoring), or
- the directional dose equivalent H'(0,07) (for workplace and environmental dosimetry monitoring).

NOTE 1 The term "environmental dosimetry" means ambient, area, and environmental monitoring in this standard.

This document applies to dosimetry systems that measure external photon and/or beta radiation in the dose range between 0,01 mSv and 10 Sv and in the energy ranges given in Table 1. All the energy values are mean energies with respect to the prevailing dose quantity fluence. The dosimetry systems usually use electronic devices for the data evaluation and thus are often computer controlled.

Measuring quantity	Mandatory mean energy range for photon radiation	Maximum mean energy range for testing photon radiation	Mandatory mean energy range for beta-particle radiation ^a	Maximum mean energy range for testing beta- particle radiation ^a
H _p (10), <i>Н</i> *(10)	80 keV to 1,25 $\mathrm{MeV^b}$	12 keV to <mark>-10</mark> 7 MeV	_	-
H _p (3), H'(3)	30 keV to 250 keV	8 keV to -10 7 MeV	0,8 MeV ^c almost equivalent to an E_{max} of 2,27 MeV	0,7 MeV ^{bc} to 1,2 MeV almost equivalent to <i>E</i> _{max} from 2,27 MeV to 3,54 MeV
H _p (0,07), H'(0,07)	30 keV to 250 keV	8 keV to 10 MeV 1,25 MeV ^b	0,24 MeV to 0,8 MeV almost equivalent to an E _{max} of 2,27 MeV	0,06 MeV ^e to 1,2 MeV almost equivalent to <i>E</i> _{max} from 0,225 MeV to 3,54 MeV 0,07 MeV ^d to 1,2 MeV ^e

Table 1 – Mandatory and maximum energy ranges covered by this document

The following beta radiation sources are suggested for the different mean energies: For 0,06 MeV: ¹⁴⁷Pm; for 0,8 MeV: 90Sr/90Y; for 1,2 MeV: 106Ru/106Rh.

b 1,25 MeV is the mean energy of photon radiation from ⁶⁰Co.

^{bc} For beta-particle radiation, an energy of 0,7 MeV is required to reach the radiation sensitive layers of the eye lens in a depth of about 3 mm (approximately 3 mm of ICRU tissue).

^{ed} For beta-particle radiation, an energy of 0,07 MeV is required to penetrate the dead layer of skin of 0,07 mm (approximately 0,07 mm of ICRU tissue).

0,07 MeV, 0,8 MeV and 1,2 MeV beta mean energy are almost equivalent to an $E_{\rm max}$ of 0,225 MeV, 2,27 MeV and 3,54 MeV, respectively.

NOTE 21 In this document, "dose" means dose equivalent, unless otherwise stated.

NOTE 32 For $H_n(10)$ and $H^*(10)$ no beta radiation is considered. Reasons:

a) $H_p(10)$ and $H^*(10)$ are a conservative estimate for the effective dose which is not a suitable quantity for beta radiation.

b) No conversion coefficients are available in ICRU 56, ICRU 57 or ISO 6980-3.

NOTE 43 The maximum energy ranges are the energy limits within which type tests according to this document are possible.

NOTE 4 Direct ion storage (DIS) dosemeters are covered in this document as they are often operated without an online display but a separate reader.

The test methods concerning the design (Clause 8), the instruction manual (Clause 9), the software (Clause 10), environmental influences (Clause 13), electromagnetic influences (Clause 14), mechanical influences (Clause 15), and the documentation (Clause 16) are independent of the type of radiation. Therefore, they can also be applied to other dosimetry systems, e.g. for neutrons, utilizing the corresponding type of radiation for testing.

This document is intended to be applied to dosimetry systems that are capable of evaluating doses in the required quantity and unit (Sv) from readout signals in any quantity and unit. The only correction that may be applied to the evaluated dose (indicated value) is the one resulting from natural background radiation using extra dosemeters.

NOTE 5 The correction due to natural background can be made before or after the dose calculation.

2 Normative references iffeh Standards

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 61000-4-2, Electromagnetic compatibility (EMC) – Part 4-2: Testing and measurement techniques – Electrostatic discharge immunity test

IEC 61000-4-3, Electromagnetic compatibility (EMC) – Part 4-3: Testing and measurement techniques – Radiated, radio-frequency, electromagnetic field immunity test

IEC 61000-4-4, Electromagnetic compatibility (EMC) – Part 4-4: Testing and measurement techniques – Electrical fast transient/burst immunity test

IEC 61000-4-5, Electromagnetic compatibility (EMC) – Part 4-5: Testing and measurement techniques – Surge immunity test

IEC 61000-4-6, *Electromagnetic compatibility (EMC) – Part 4-6: Testing and measurement techniques – Immunity to conducted disturbances, induced by radio-frequency fields*

IEC 61000-4-8, *Electromagnetic compatibility (EMC) – Part 4-8: Testing and measurement techniques – Power frequency magnetic field immunity test*

IEC 61000-4-11, Electromagnetic compatibility (EMC) – Part 4-11: Testing and measurement techniques – Voltage dips, short interruptions and voltage variations immunity tests

IEC 61000-6-2, Electromagnetic compatibility (EMC) – Part 6-2: Generic standards – Immunity for industrial environments