

IEC TR 61850-10-3

Edition 1.0 2022-02

TECHNICAL REPORT

Teh STANDARD Communication networks and systems for power utility automation – Part 10-3: Functional testing of IEC 61850 systems

(standards.iteh.ai)

IEC TR 61850-10-3:2022 https://standards.iteh.ai/catalog/standards/sist/0a119866-569e-463a-8ce5-4600ebced765/iec-tr-61850-10-3-2022

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2022 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Secretariat 3, rue de Varembé CH-1211 Geneva 20 Switzerland Tel.: +41 22 919 02 11 info@iec.ch www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc If you wish to give us your feedback on this publication or need further assistance, please contact the customer Service OS.iteh.ai)

IEC Products & Services Portal - products.iec.ch

Discover our powerful search engine and read freely all the publications previews. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 300 terminological entries in English and French, with equivalent terms in 19 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

<u>IEC TR 61850-10-3:2022</u> https://standards.iteh.ai/catalog/standards/sist/0a119866-

569e-463a-8ce5-4600ebced765/iec-tr-61850-10-3-2022

Edition 1.0 2022-02

TECHNICAL REPORT

iTeh STANDARD

Communication networks and systems for power utility automation – Part 10-3: Functional testing of IEC 61850 systems

(standards.iteh.ai)

IEC TR 61850-10-3:2022

https://standards.iteh.ai/catalog/standards/sist/0a119866-569e-463a-8ce5-4600ebced765/iec-tr-61850-10-3-2022

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 33.200

ISBN 978-2-8322-1075-7

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FOREWORD					
IN	INTRODUCTION				
1	Scop	e	9		
2	Norm	native references	9		
3	Terms, definitions, abbreviated terms and acronyms10				
	3.1	Terms and definitions			
	3.1.1				
	3.2	Abbreviated terms and acronyms			
4	Testi	ng-related features in IEC 61850			
	4.1	General	. 13		
	4.2	Test features defined in IEC 61850			
	4.2.1	General	. 13		
	4.2.2	Simulation based testing in substations under normal operation	. 14		
	4.2.3	-			
	4.2.4	Logical devices management hierarchy	. 18		
	4.2.5				
	4.2.6	Blocking of information	.23		
	4.2.7	Changing the information source (input reference) for testing	.25		
	4.2.8	Substitution of information	.26		
	4.2.9	0			
5	Testi	ng of Protection, Automation and Control Devices and Systems General	.28		
	5.1	General	.28		
	5.2	Test system requirements	.29		
6	Test	Test system requirements methods, practices and needs https://standards.iteh.ai/catalog/standards/sist/0a119866-	. 30		
	6.1	General569e-463a-8ce5-4600ebced765/iec-tr-61850-10-3-2022	. 30		
	6.2	Testing requirements for IEC 61850 based systems	. 30		
	6.3	The V-Model	. 31		
	6.3.1	General	. 31		
	6.3.2	Unit testing	. 31		
	6.3.3	Integration or subsystem testing	. 32		
	6.3.4	System testing	. 32		
7	Testi	ng use cases	. 32		
	7.1	General	. 32		
	7.2	Distributed Breaker Failure Protection Scheme	. 33		
	7.2.1	General	. 33		
	7.2.2	Use case description	. 33		
	7.2.3	Breaker Failure Protection Scheme Interfaces	. 37		
	7.3	Distributed Select Before Operate			
	7.3.1	General	. 38		
	7.3.2		. 38		
	7.3.3	•			
	7.3.4	•			
	7.3.5	5 5			
-		sequences for the use cases			
	8.1	Breaker failure protection testing			
	8.1.1	General	.46		

	8.1.2	Normal sequence	46		
	8.1.3	Fault sequence	47		
	8.1.4	Setting the test mode and the simulation state of the line protection function	48		
	8.1.5	Setting the test mode and the simulation state of the breaker failure			
		function			
	8.1.6	Setting the test mode and the simulation state of the breaker function			
	8.1.7 8.1.8	Setting the test mode of the bus bar protection function			
	8.1.9	Testing the line protection IED Testing the breaker failure IED A interface			
	8.1.1				
	8.1.1	0			
8		Select Before Operate Scheme Testing			
	8.2.1	General			
	8.2.2	Unit testing			
	8.2.3	Subsystem (Interface) testing			
	8.2.4	System (End-to-End) testing			
9	Mode	ling requirements related to testing in IEC 61850			
10		t modeling of test systems			
11		eering of the test system. STANDARD			
12		ct of the testing system on the substation LAN traffic			
13	•	ional and cyber security considerations.			
14	Remo	ote testing informative) Introduction to the used UML notation	79		
A	N.1	General	80		
A	1.2	https://standards.iteh.ai/catalog/standards/sist/0a119866-	80		
A	1.3 	General. Component diagram <u>IEC TR 61850-10-3:2022</u> Sequence diagram Informative) Requirements for extensions	80		
		Requirements for extensions in IEC 61850-7-1			
		Requirements for extensions in IEC 61850-7-3			
E	3.3	Requirements for extensions in IEC 61850-7-4	84		
Figu	ıre 1 –	Data used for receiving simulation signals (IEC 61850-7-1 Fig. 40)	15		
Figu	ıre 2 –	IED with multiple process interfaces	15		
Figu	ıre 3 –	Processing of test signals (Part 7-1, Figure 42)	18		
Figu	ıre 4 –	Nesting of logical devices representing the functional hierarchy	19		
-		Use of GrRef in the modelling of nested logical devices			
•		Management hierarchy of nested logical devices			
Figu	ıre 7 –	Processing of the data by a LN depending on the LN behaviour and the ribute of input data			
•		Data used for logical node inputs/outputs blocking: IEC 61850-7-1:2011,	66		
			24		
Figu	ıre 9 –	Example of input signals used for testing (IEC 61850-7-1:2011, Figure 41)	25		
Figure 10 – Use of InRef for LN test					
•		– Quality assurance stages of IEC 61850-4:2011			
		 Testing stages for site acceptance test as defined in IEC 61850-4:2011 			
-		– V-Model used for system engineering			
i igu		v meder doed for system engineering			

Figure 14 – Single line diagram according to IEC 81346	34
Figure 15 – System components (Static)	36
Figure 16 – System components (Dynamic)	37
Figure 17 – Select Before Operate Scheme	39
Figure 18 – Component decomposition of Select Before Operate Scheme	40
Figure 19 – Allocated interfaces for Select Before Operate Scheme – SLD	41
Figure 20 – Allocated interfaces for Select Before Operate Scheme	42
Figure 21 – Simplified SBO scheme behaviour	44
Figure 22 – Single line diagram	45
Figure 23 – Normal sequence	47
Figure 24 – Fault sequence	48
Figure 25 – Line protection function: Setting the mode and the simulation state	49
Figure 26 – Breaker failure function: Setting the mode and the simulation state	50
Figure 27 – Breaker function: Setting the mode and the simulation state	51
Figure 28 – Bus bar protection function: Setting the mode	51
Figure 29 – Line protection IED A interface testing	53
Figure 30 – Interfaces between test system and tested IED for testing of line protection function	54
Figure 31 – Breaker failure IED A interface testing	55
Figure 32 – Interfaces between test system and tested IED for testing of breaker	
failure protection function	57
Figure 34 – Interfaces between test system and tested IED for testing of breaker control function <u>IEC.TR.61850-10-3;2022</u>	58
Figure 35 - Breakeh failure function end to end testing dards/sist/0a119866-	
Figure 36 – Interfaces between test system and tested IEDs for End-to-End testing of breaker failure protection scheme	
Figure 37 – Unit test of TVTR LN – simplified	62
Figure 38 – Unit test of TVTR LN	63
Figure 39 – Unit test of XCBR LN – Scenario 1 – simplified	64
Figure 40 – Unit test of XCBR LN – Scenario 1	66
Figure 41 – Unit test of XCBR LN – Scenario 2 – simplified	67
Figure 42 – Unit test of XCBR LN – Scenario 2	68
Figure 43 – Interface test of CSWI – XCBR LNs	70
Figure 44 – End-to-end test of SBO scheme	72
Figure 45 – End-to-end test (positive)	73
Figure 46 – End to end test (negative #1)	74
Figure 47 – End to end test (negative #2)	74
Figure 48 – End to end test (negative #3)	75
Figure 49 – Simplified object model of test device as an IED Simulator	76
Figure 50 – Simplified object model of test device as generic Simulator	76
Figure 51 – Testing of transformer differential protection	
Figure 52 – Remote test system	79
Figure A.1 – Example of a component diagram	80

IEC TR 61850-10-3:2022 © IEC 2022 – 5 –	
Figure A.2 – Sequence diagram example	81
Table 1 – LD/LN Mode/Beh inheritance	17
Table 2 – Table A.2 of IEC 61850-7-4:2010/AMD1:2020, Annex A summarizes the processing principles	23
Table 3 – Applicable modes for different types of tests	27
Table A.1 – Description of the component diagram UML elements	80
Table A.2 – Description of UML elements in a sequence diagram	82
Table B.1 –Examples of accuracy attributes	84

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>IEC TR 61850-10-3:2022</u> https://standards.iteh.ai/catalog/standards/sist/0a119866-569e-463a-8ce5-4600ebced765/iec-tr-61850-10-3-2022

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMUNICATION NETWORKS AND SYSTEMS FOR POWER UTILITY AUTOMATION –

Part 10-3: Functional testing of IEC 61850 systems

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification todies. 10-3:2022
- 6) All users should ensure that they have the datest/edition of this publication 1/0a119866-
- 7) No liability shall attach to IEC or its directors, employees, servants of agents-including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

IEC TR 61850-10-3, which is a Technical Report, has been prepared by IEC technical committee 57: Power systems management and associated information exchange.

The text of this Technical Report is based on the following documents:

Draft	Report on voting
57/2199/DTR	57/2328/RVDTR

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this Technical Report is English.

A list of all parts in the IEC 61850 series, published under the general title *Communication networks and systems for power utility automation*, can be found on the IEC website.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/standardsdev/publications.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>IEC TR 61850-10-3:2022</u> https://standards.iteh.ai/catalog/standards/sist/0a119866-569e-463a-8ce5-4600ebced765/iec-tr-61850-10-3-2022

INTRODUCTION

The growing success of the IEC 61850 series calls for guidelines for testing of substations implementing this standard. This Technical Report aims at producing a practical guide for protection, automation and control (PAC) engineers on best practise for testing of the latest amended IEC 61850 based devices and systems.

Since the release of the first edition of the IEC 61850 standard in 2002-2005 thousands of substations have been built making use of the new multi-part standard. Most of those systems are more integrated and complex than the previously deployed, making use of multi-function capable IEDs and the rich feature set of IEC 61850. Especially the sending and receiving of protection trips via GOOSE messaging control commands/indications, monitoring and time synchronisation information over the same shared equipment or network will need to drive changes to existing test methods and practices as many of the traditional test boundaries have changed.

Despite the large number of commissioned IEC 61850 substations, considerable uncertainty among end-users (system integrators and power utilities) regarding the correct testing procedures still exists. Devices implemented according to the first edition of the standard also utilized a limited part of the test related functionality in the standard. Much of the functionality included in IEC 61850 to allow efficient, functional oriented testing has been clarified and extended in the second edition of IEC 61850-6, IEC 61850-7-1 to IEC 61850-7-4, IEC 61850-8-1 and IEC 61850-9-2. Therefore, there is a need to help the industry by describing the methods and principles for testing the IEC 61850 based applications.

This Technical Report provides insight into the changing requirements and practice of testing following the introduction of IEC 61850 based devices and systems. One example is the disappearance of so-called (hardwired' connections between substation automation devices. These connections are replaced by communication networks and this means that traditional simulation and isolation of signals for the purpose of testing is no longer possible.

<u>IEC TR 61850-10-3:2022</u> https://standards.iteh.ai/catalog/standards/sist/0a119866-569e-463a-8ce5-4600ebced765/iec-tr-61850-10-3-2022

COMMUNICATION NETWORKS AND SYSTEMS FOR POWER UTILITY AUTOMATION –

Part 10-3: Functional testing of IEC 61850 systems

1 Scope

This part of IEC 61850, which is a technical report, is applicable to testing of applications within substations. It is intended to give practical guidelines to perform the stages of quality assurance defined in IEC 61850-4:2011. However, while the quality assurance in that document begins with the IED manufacturer development stage and focuses on the role of the system integrator this document focuses on end-user requirement fulfilment.

The report may be useful to users applying IEC 61850 to other domains, however testing of IEC 61850 systems outside the substation domain is not within the scope of this document.

This document describes:

- A methodical approach to the verification and validation of a substation solution
- The use of IEC 61850 resources for testing in Edition 2.1
- Recommended testing practices for different use cases
- Definition of the process for testing of IEC 61850 based devices and systems using communications instead of hard wired system interfaces (ex. GOOSE and SV instead of hardwired interfaces)
- Use cases related to protection and control functions verification and testing

This document does not cover the conformance testing of devices according to IEC 61850-10 or methodologies for testing of abstract device independent functions-2022

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 61850-4:2011, Communication networks and systems for power utility automation - Part 4: System and project management

IEC 61850-6:2009, Communication networks and systems for power utility automation - Part 6: Configuration description language for communication in electrical substations related to IEDs IEC 61850-6:2009/AMD1:2018 IEC 61850-6:2009/AMD1:2018

IEC 61850-7-1:2011, Communication networks and systems for power utility automation - Part 7-1: Basic communication structure - Principles and models IEC 61850-7-1:2011/AMD1:2020

IEC 61850-7-2:2010, Communication networks and systems for power utility automation - Part 7-2: Basic information and communication structure - Abstract communication service interface (ACSI) IEC 61850-7-2:2010/AMD1:2020 IEC 61850-7-3:2010, Communication networks and systems for power utility automation - Part 7-3: Basic communication structure - Common data classes IEC 61850-7-3:2010/AMD1:2020

IEC 61850-7-4:2010, Communication networks and systems for power utility automation - Part 7-4: Basic communication structure - Compatible logical node classes and data object classes IEC 61850-7-4:2010/AMD1:2020

IEC 61850-8-1:2011, Communication networks and systems for power utility automation - Part 8-1: Specific communication service mapping (SCSM) - Mappings to MMS (ISO 9506-1 and ISO 9506-2) and to ISO/IEC 8802-3 IEC 61850-8-1:2011/AMD1:2020

IEC 61850-9-2:2011, Communication networks and systems for power utility automation - Part 9-2: Specific communication service mapping (SCSM) - Sampled values over ISO/IEC 8802-3 IEC 61850-9-2:2011/AMD1:2020

IEC 61850-10:2012, Communication networks and systems for power utility automation - Part 10: Conformance testing

IEC 81346-2, Industrial systems, installations and equipment and industrial products -Structuring principles and reference designations - Part 2: Classification of objects and codes for classes

3 Terms, definitions, abbreviated terms and acronyms

3.1 Terms and definitionsstandards.iteh.ai)

3.1.1 Testing types

<u>IEC TR 61850-10-3:2022</u>

3.1.1.1 https://standards.iteh.ai/catalog/standards/sist/0a119866tests which serve to verify if an IED or a scheme meets the customer requirements

Note 1 to entry: This could include a specific FAT if it is required by the customer.

3.1.1.2

commissioning tests

test on an item carried out on site, to prove that it is correctly installed and can operate correctly

Note 1 to entry: The commissioning phase is carried out on site (in the substation) when the installation phase is complete. These tests are performed to ensure the safe and reliable operation of the system with associated substation interfaces. The commissioning phase is a global operation which follows the installation and runs until the energization, load tests and adjustments are completed.

[SOURCE: IEC 60050-151:2001, 151-16-24]

3.1.1.3 conformance tests

first of the functional tests of the components of an integrated substation automation system (SAS)

Note 1 to entry: Every IED or Device Under Test (DUT) which belongs to the SAS, is tested. The conformance tests are performed to show that the IED are compliant to requirements relative to environment, data model, communication and functional standards. These tests can be performed by a vendor or by an independent authority who certify test results.

3.1.1.4

Factory Acceptance Tests (FAT) of schemes and systems

customer agreed functional tests of the specifically manufactured system or its parts, using the parameter set for the planned application

Note 1 to entry: This test is typically performed in the factory of the system integrator by the use of process simulating test equipment.

[SOURCE: IEC 61850-4:2011 3.20]

3.1.1.5

installation tests

tests carried out by the contractor after installation in order to verify if the system is ready to be commissioned

3.1.1.6

interoperability tests

tests applied to an assembly of IEDs of the same or different vendors

Note 1 to entry: They shall demonstrate that these IEDs, when interconnected by a proper communication system, may operate together, sharing information and performing their functions in a secure way and with specified level of performance. They should be performed with the customer acceptance during system development and factory acceptance tests.

tests applied to two function elements of a distributed function interfacing over a substation communication interface in order to evaluate the impact of the communications architecture and traffic on the performance of the distributed function or sub function

(standards.iten.ai)

3.1.1.8

3.1.1.9

Maintenance Tests

all testing activities which occur after the IED or PAC scheme has been put into service

https://standards.iteh.ai/catalog/standards/sist/0a119866-

569e-463a-8ce5-4600ebced765/iec-tr-61850-10-3-2022

Site Acceptance Tests (SAT)

tests consisting of the verification of each data and control point and the correct functionality inside the automation system and between the automation system and its operating environment at the whole installed plant by use of the final parameter set

Note 1 to entry: The SAT is a precondition for the automation system being put into operation.

[SOURCE: IEC 61850-4:2011 3.21]

3.1.1.10

End-to-End test

End-to-end testing is used to ensure that the integrated components of an application function as expected – from the input from the process to the output to the processTesting Methods

3.1.1.11 black-box testing

testing based upon the requirements with the function or system treated as a "black-box" when the internal workings of the system are unknown

Note 1 to entry: In black-box testing the system is given a stimulus (input) and if the result (output) is what was expected, then the test passes. No consideration is given to how the process was completed.

3.1.1.12

bottom-up testing

testing which starts with the function elements and works upwards

Note 1 to entry: It involves testing the function elements at the lower levels in the hierarchy, and then working up the hierarchy of sub-functions until the final function is tested.

3.1.1.13

closed-loop testing

testing characterized by the fact that the output from the device or system under test is looped back and affects the next stage of the simulation

3.1.1.14

local testing

process where all simulation tasks, the assessment of the tested device performance and the documentation of the results from the test are performed by the tester at the site of the tested devices or system using mobile test equipment

3.1.1.15

manual testing

manual testing is the process where most of the simulation tasks, the assessment of the tested device performance and the documentation of the results from the test are performed manually by the tester.

3.1.1.16

negative testing

testing process where the system validated against the invalid input data

ileh STANDARD

Note 1 to entry: A negative test checks if a application behaves as expected with its negative inputs.

3.1.1.17

positive testing

testing process where the system is validated against the valid input data

Note 1 to entry: In this testing the tester always checks for only valid set of values and checks if an application behaves as expected with its expected inputs. The main intention of this testing is to check whether the software

application is not showing an error when not supposed to and showing an error when supposed to. https://standards.iteh.ai/catalog/standards/sist/0a119866-

569e-463a-8ce5-4600ebced765/iec-tr-61850-10-3-2022

3.1.1.18 remote testing

process where all simulation tasks, the assessment of the tested device performance and the documentation of the results from the test are performed by the tester from a remote location over a communications link to the site of the tested devices or system using test equipment permanently installed at the site

3.1.1.19

top-down testing

testing method which tests the high levels of a system before testing its detailed functional components

Note 1 to entry: Testing starts with the overall function test and goes down the hierarchy testing sub-functions until the function elements at the bottom of the hierarchy are tested.

3.1.1.20

white-box testing

testing based upon the requirements with the internal workings of the function or system known

Note 1 to entry: In white-box testing the system is given a stimulus (input) and if the result (output) is what was expected, then the test passes, however consideration is also given to how the internal elements of the function worked.

IEC TR 61850-10-3:2022 © IEC 2022 - 13 -

3.2 Abbreviated terms and acronyms

The following abbreviations and acronyms are used in this document:

- BFP: Breaker Failure Protection
- GOOSE: Generic Object-Oriented Substation Event
- IED: Intelligent Electronic Device
- PAC: Protection, Automation and Control
- PACS: Protection, Automation and Control System
- PUAS: Power Utility Automation System
- SAS: Substation Automation System
- SBO: Select Before Operate

4 Testing-related features in IEC 61850

4.1 General

Functions in Power Utility Automation Systems (PUAS) are not performed by a single function element (Logical Node, LN), but implemented through an interaction of multiple Logical Nodes, each contributing its specific functionality. The different functions may be accommodated in different logical devices, even hosted by different physical devices, which imposes the usage of agreed-upon basics:

- standardized function interfaces content and behavior (from a communicational perspective) through LN,
- evaluation of the information received in a predictable manner,
- exchange of information of a common semantic.

While during normal operation the information of low is defined by the communication configuration, testing requires a user interference into this scheme prior to the test, to avoid inadvertent reactions onto information created during testing. Disconnecting of a device under test is not the appropriate way of doing, moreover as this device may require information from the other components of the system to perform its function.

The above mentioned basics of IEC 61850 are used for testing purposes to functionally isolate a definable structure of functions in a system environment without disturbing the components in normal operation. The following chapters will present the principles of how functional isolation is achieved.

4.2 Test features defined in IEC 61850

4.2.1 General

Some of the features described in this subclause are not mandatory and therefore may not be available in all IEDs which conform to IEC 61850. It is in the responsibility of the user to reestablish operational conditions in the device under test after having finalized the tests.

It shall be well understood which testing-related features defined in IEC 61850 and described in the following clauses are implemented in the devices used in the substation. The user shall develop procedures that will use the testing features for virtual isolation of the different active protection, automation and control devices during the testing in a live substation. This includes resetting of all interventions made onto controllable elements for testing purposes as well as clearing of buffers, logs, counters if applicable. Considering the possibility that the actual operational conditions may include settings which deviate from the as-built status, manipulating a device under test requires careful considerations. The user is welcome to be supported by tools during this task.