

Designation: B258 - 14 <u>B258 - 18</u>

Standard Specification for Standard Nominal Diameters and Cross-Sectional Areas of AWG Sizes of Solid Round Wires Used as Electrical Conductors¹

This standard is issued under the fixed designation B258; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the U.S. Department of Defense.

1. Scope

- 1.1 This specification prescribes standard nominal diameters and cross-sectional areas of American Wire Gage (AWG) sizes of solid round wires, used as electrical conductors, and gives equations and rules for the calculation of standard nominal mass and lengths, resistances, and breaking strengths of such wires (Explanatory Note 1).
- 1.2 The values stated in inch-pound or SI units are to be regarded separately as standard. Each system shall be used independently of the other. Combining values of the two systems may result in nonconformance with the specification. For conductor sizes designated by AWG or kcmil sizes, the requirements in SI units have been numerically converted from the corresponding values stated or derived, in inch-pound units. For conductor sizes designated by SI units only, the requirements are stated or derived in SI units.
 - 1.2.1 For density, resistivity and temperature, the values stated in SI units are to be regarded as standard.
- 1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:²

A111 Specification for Zinc-Coated (Galvanized) "Iron" Telephone and Telegraph Line Wire

A326 Specification for Zinc-Coated (Galvanized) High Tensile Steel Telephone and Telegraph Line Wire (Withdrawn 1990)³

B1 Specification for Hard-Drawn Copper Wire

B2 Specification for Medium-Hard-Drawn Copper Wire

B3 Specification for Soft or Annealed Copper Wire

B9 Specification for Bronze Trolley Wire

B33 Specification for Tin-Coated Soft or Annealed Copper Wire for Electrical Purposes

B47 Specification for Copper Trolley Wire

B105 Specification for Hard-Drawn Copper Alloy Wires for Electric Conductors

B189 Specification for Lead-Coated and Lead-Alloy-Coated Soft Copper Wire for Electrical Purposes

B193 Test Method for Resistivity of Electrical Conductor Materials

B227 Specification for Hard-Drawn Copper-Clad Steel Wire

B230/B230M Specification for Aluminum 1350–H19 Wire for Electrical Purposes

B314 Specification for Aluminum 1350 Wire for Communication Cable (Withdrawn 1994)³

B396 Specification for Aluminum-Alloy 5005-H19 Wire for Electrical Purposes (Withdrawn 2003)³

B398/B398M Specification for Aluminum-Alloy 6201-T81 and 6201-T83 Wire for Electrical Purposes

B415 Specification for Hard-Drawn Aluminum-Clad Steel Wire

¹ This specification is under the jurisdiction of ASTM Committee B01 on Electrical Conductors and is the direct responsibility of Subcommittee B01.02 on Methods of Test and Sampling Procedure.

Current edition approved April 1, 2014Oct. 1, 2018. Published April 2014October 2018. Originally approved in 1951. Last previous edition approved in $\frac{20082014}{2018}$ as $\frac{2018}{2018}$ and $\frac{2$

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

³ The last approved version of this historical standard is referenced on www.astm.org.

B498/B498M Specification for Zinc-Coated (Galvanized) Steel Core Wire for Use in Overhead Electrical Conductors

B502 Specification for Aluminum-Clad Steel Core Wire for Use in Overhead Electrical Aluminum Conductors

B606 Specification for High-Strength Zinc-Coated (Galvanized) Steel Core Wire for Aluminum and Aluminum-Alloy Conductors, Steel Reinforced

B609/B609M Specification for Aluminum 1350 Round Wire, Annealed and Intermediate Tempers, for Electrical Purposes

B800 Specification for 8000 Series Aluminum Alloy Wire for Electrical Purposes—Annealed and Intermediate Tempers

B802 Specification for Zinc-5% Aluminum-Mischmetal Alloy-Coated Steel Core Wire for Aluminum Conductors, Steel Reinforced (ACSR)[Metric](Discontinued 1998-Replaced by B 802/B802M) B0802_B0802M

B803 Specification for High-Strength Zinc-5 % Aluminum-Mischmetal Alloy-Coated Steel Core Wire for Use in Overhead Electrical Conductors

B957 Specification for Extra-High-Strength and Ultra-High-Strength Zinc-Coated (Galvanized) Steel Core Wire for Overhead Electrical Conductors

B958 Specification for Extra-High-Strength and Ultra-High-Strength Class A Zinc-5% Aluminum-Mischmetal Alloy-Coated Steel Core Wire for Use in Overhead Electrical Conductors

E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications

F205 Test Method for Measuring Diameter of Fine Wire by Weighing

3. Standard Reference Temperature

3.1 For the purpose of this specification, all wire dimensions and properties shall be considered as occurring at the internationally standardized reference temperature of 20°C (68°F).

4. Standard Rules for Rounding

4.1 All calculations for the standard nominal dimensions and properties of solid round wires shall be rounded in the *final* value only, in accordance with rounding method of Practice E29.

5. Standard Nominal Diameters

- 5.1 Standard nominal diameters of AWG sizes of solid round wires shall be calculated in accordance with the conventional mathematical law of the American Wire Gage (see Explanatory Note 1) and in accordance with Section 4.
- 5.2 For wire sizes 4/0 to 44 AWG, inclusive, 10 AWG, inclusive, expressed in mil units, and for wire sizes 4/0 to 18 AWG, inclusive, expressed in millimetre units, nominal diameters shall be expressed in no more than four significant figures but in no case closer than the nearest 0.1 mil (0.0001 in.).figures.
- 5.3 For wire sizes 45 to 56 AWG, inclusive, 11 AWG and smaller, expressed in mil units, and for wire sizes in 19 AWG and smaller expressed in millimetre units, nominal diameters shall be expressed to the nearest 0.01 mil (0.00001 in.).in no more than three significant figures.
- 5.4 The standard nominal diameters expressed in mils <u>and mm</u> have been calculated in accordance with these rules and are given in <u>Table 1</u> for convenient reference (Explanatory <u>Note 2</u>). <u>The standard nominal diameters expressed in mm have been calculated based on the indicated mil diameter value × 0.0254.</u>

6. Standard Nominal Cross-Sectional Areas

6.1 Standard nominal cross-sectional areas in circular mils and square millimetres shall be calculated in accordance with the following equations and shall be rounded in accordance with Section 4 to the same number of significant figures as used in expressing the standard diameters, but in no case to less than three significant figures:diameters:

Area, cmil =
$$d^2$$

Area, mm² = $d^2 \times 5.067 \times 10^{-4}$

where:

d = diameter of the wire in mils as given in Table 1.

Standard nominal cross-sectional areas in circular mils and square millimetres have been calculated in accordance with the foregoing rules and are given in Table 1 for convenient reference.

6.2 Standard nominal cross-sectional areas in circular mils and square millimetres have been calculated in accordance with the foregoing rules and are given in Table 1 for convenient reference.

7. Rules for Calculations Involving Mass and Length

7.1 Standard nominal mass and lengths shall be calculated from the standard wire diameters specified in Table 1, in accordance with the following equations. They shall be rounded in the *final* value only, in accordance with Section 4, to the same number of significant figures as used in expressing the standard diameters, but in no case to less than three significant figures:

TABLE 1 Standard Nominal Diameters and Cross-Sectional Areas of AWG Sizes of Solid Round Wires at 20°C

Size	Diameter		Cross-Sectional Area		Size	Diameter	Cross-Sectional Area		
AWG	mils	mm	cmils	mm²	AWG	mils	mm	cmils	mm ²
4/0	460.0	11.684	211 600	107.2	29	11.3	0.287	128	0.0647
4/0	460.0	11.68	211 600	107.2	<u>29</u>	11.3	0.287	128	0.0647
3/0	409.6	10.404	167 800	85.0	30	10.0	0.254	100	0.0507
	409.6	10.40	167 800	85.01	30	10.0	0.254	100	0.0507
3/0 2/0	364.8	9.26	133 100	67.4	30 31	8.9	0.234 0.226	100 79.2	0.0307 0.0401
2/0					01				
2/0	364.8	9.266	133 100	<u>67.43</u>	31 32	8.90	0.226	79.2	0.0401
1/0	324.9	8.25	105 600	53.5	32	8.0	0.203	64.0	0.0324
1/0 1	324.9	8.252	105 600	53.49	32 33	<u>8.00</u>	0.203	<u>64.0</u>	0.0324
	289.3	7.35	83 690	42.4	33	7.1	0.180	50.4	0.0255
1 2 2 3	289.3	7.348	83 690	<u>42.41</u>	33 34	<u>7.10</u>	0.180	<u>50.4</u>	0.0255
2	257.6	6.54	66 360	33.6	34	6.3	0.160	39.7	0.0201
2	257.6	6.543	66 360	33.62	34 35	6.30	0.160	39.7	0.0201
- 3	229.4	5.82	52 620	26.7	35	5.6	0.142	31.4	0.0159
<u>3</u>	229.4	5.827	52 620	26.66	35 36	5.60	0.142	31.4	0.0159
4	204.3	5.19	41 740	21.1	36	5.0	0.127	25.0	0.0127
	204.3	5.189	41 740	21.15	36	5.00	0.127	25.0	0.0127
<u> </u>	204.3 181.9	3.103 4.62	33 090	16.8	36 37	4.5	0.127	20.2	0.0127
415 516 617 718					27				
2	181.9	4.620	33 090	16.77	37 38	4.50	0.114	20.2	0.0103
6	162.0	4.11	26 240	13.3	38	4.0	0.102	16.0	0.00811
<u>6</u>	162.0	<u>4.115</u>	26 240	13.30	38 39	4.00	0.102	16.0	0.00811
7	144.3	3.67	20 820	10.6	39	3.5	0.0890	12.2	0.00621
7	144.3	3.665	20 820	<u>10.55</u>	39 40	3.50	0.0889	<u>12.2</u>	0.00621
8	128.5	3.26	16 510	8.37	40	3.1	0.0787	9.61	0.00487
<u>8</u>	128.5	3.264	16 510	8.367	40 41	3.10	0.0787	9.61	0.00487
9	114.4	2.91	13 090	6.63	41	2.8	0.0711	7.84	0.00397
<u>9</u> 10	114.4	2.906	13 090	6.631	<u>41</u>	2.80	0.0711	7.84	0.00397
10	101.9	2.59	10 380	5.26	42	2.5	0.0635	6.25	0.00317
10	101.9	2.588	10 380	5.261	42	2.50	0.0635	6.25	0.00317
11	90.7	2.30	8 230	4.17	42 43	2.2	0.0559	4.84	0.00245
	90.7	2.304	8 230	4.168	43	2.20	0.0559	4.84	0.00245
11 12	80.8	2.05	6 530	3.31	$\frac{43}{44}$	$\frac{2.20}{2.0}$	0.0508	4.00	0.00243
10									
12 13	80.8 72.0	2.052	6 530	3.308	44	2.00	0.0508	4.00 3.10	0.00203 0.00157
10		1.83	5 180	2.63	45 45	C1.76	0.0447		
13 14	72.0	1.829	5 180	2.627	45	1.76	0.0447	3.10	0.00157
14	64.1	1.63	4 110	2.08	46	1.57	0.0399	2.46	0.00125
14 15	<u>64.1</u>	1.628	4 110	2.082	$\frac{46}{47}$	1.57	0.0399	<u>2.46</u>	0.00125
15	57.1	1.45	3 260	1.65		1.40	0.0356	1.96	0.000993
<u>15</u>	<u>57.1</u>	1.450	3 260	1.652	<u>47</u>	<u>1.40</u>	0.0356	<u>1.96</u>	0.000993
15 16	50.8	1.29	2 580	1.31	48	1.24	0.0315	1.54	0.000779
16	50.8	1.290	2 580	1.308	48	1.24	0.0315	1.54	0.000779
17	45.3	1.15	2 050	1.04 S	TM 1 49 58-	18 1.11	0.0282	1.23	0.000624
17	45.3	1.151	2 050	1.040	49	1.11	0.0282	1.23	0.000624
18 PS	//stan 40.3 ds.	iteh. 1.02 ata	log 1 620 dai	ds 0.823 6a	c918 50)-c9	$35-4\frac{1}{0.99}-820$	0.0252	4276 0.980 astn	$1-b^2\frac{0.000497}{0.000497}$
	40.3	1.024	1 620	0.823		0.99	0.0252	0.980	0.000497
18 19	35.9	0.904	1 290	0.653	<u>50</u> 51	0.88	0.0232	0.774	0.000437
10	35.9	0.912	1 290	0.653	51	0.88	0.0224	0.774	0.000392
<u>19</u> 20	32.0	0.912	1 020	0.53	<u>51</u> 52	0.88	0.0224	0.608	0.000392
21	28.5	0.724	812	0.412	53	0.70	0.0178	0.490	0.000248
22	25.3	0.643	640	0.324	54	0.62	0.0158	0.384	0.000195
<u>22</u> 23	<u>25.3</u>	0.643	<u>640</u>	0.324	<u>54</u> 55	0.62	0.0157	0.384	0.000195
23	22.6	0.574	511	0.259		0.55	0.0140	0.302	0.000153
24	20.1	0.511	404	0.205	56	0.49	0.0125	0.240	0.000122
24	20.1	0.511	404	0.205	<u>56</u>	0.49	0.0124	0.240	0.000122
<u>24</u> 25	17.9	0.455	320	0.162	_				
26	15.9	0.404	253	0.128					
27	14.2	0.361	202	0.102					
		0.001	202	0.106					

 $W = d^{2} \times \delta \times 0.34049 \times 10^{-3}$ $L = (1/d^{2}) \times (1/\delta) \times 2.9369 \times 10^{6}$

where:

W = mass, 1b/1000 ft,

d = diameter of the wire in mils as given in Table 1,

 δ = density of the wire material at 20°C in g/cm³ as given in Table 2, and

L = length, ft/lb.

8. Rules for Calculations Involving Resistivity

8.1 Standard nominal resistances and other values derived from the resistivity units shall be calculated from the standard wire diameters specified in Table 1 in accordance with the following equations. All values so derived shall be rounded in the *final* value

TABLE 2 Density and Resistivity of Electrical Conductor Materials

<u>Material</u>	Density, δ, at 20°C, g/cm ³	Resistivity ^A , ρ , at 20°C, Ω · lb/mile ²	<u>Material</u>	Density,δ, at 20°C, g/cm ³	Resistivity, ρ , at 20°C Ω · lb/mile ²
Material	Density, δ, at 20°C, g/cm³	Resistivity ^A , ρ , at 20°C, Ω - lb/mile ²	Material	Density,δ, at 20°C, g/cm³	Resistivity, ρ, at 20°C Ω- lb/mile²
Copper (Specifications B1, B2,			Aluminum Clad Steel (Specification	6.59	3191
Copper (Specifications			Aluminum-Clad Steel (Specifications	6.59	<u>3191</u>
3, B33, B47 and B189), Volume Conductivity, %			B415 and B502) Copper-Clad Steel (Specification		
IACS:			B227):		
100	8.89	875.20	Grade 30 HS	8.15	2728
97.66	8.89	896.15	Grade 30 HS	8.15	2728
97.66	8.89	896.15	Grade 30 EHS	8.15	2728
97.16	8.89	900.77	Grade 30 EHS	8.15	2728
<u>97.16</u> 96.66	8.89 8.89	900.77 905.44	Grade 40 Grade 40 EHS	8.15 8.15	<u>2045</u> 2045
96.16	8.89	910.15	Grade 40 EHS	8.15	2045 2045
94.16	8.89	929.52	Galvanized Steel (Telephone and	0.10	2010
96.16	8.89	910.15	Galvanized Steel (Telephone and		
94.16	8.89	929.52	Telegraph) (Specification A111):		
93.15	8.89	939.51	Telegraph) (Specification		
93.15 (Chapitication BO):	8.89	939.51	Class A Coating:		
ronze (Specification B9):			A111): Grade EBB (Non-Copper	7 70	5000
ronze (Specification B9): Class A	8.89	2188	Class A Coating:	<u>7.78</u>	<u>5000</u>
Class B	8.89	1346	Grade EBB (Non-Copper	7.78	5000
Class C	8.89	1094	———Bearing)		
Class A	8.89	2188_	Bearing)		
opper Alloys (Specification			Grade BB (Copper Bearing)	7.78	5800
Class B	<u>8.89</u>	<u>1346</u>	Grade BB (Copper Bearing)	7.78	<u>5800</u>
105^B): Class C	0 00	1004	Grade BB (Non-Copper Grade BB (Non-Copper	7.78 7.79	5600
opper Alloys (Specification B105 ^B):	8.89	1094	Bearing)	<u>7.78</u>	<u>5600</u>
Grade 8.5	8.78	10 169	Bearing)		
Grade 8.5	8.78	/10 169	Class B Coating:		
Grade 13	8.78	6649	Class B Coating:		
Grade 15	8.54	5605	Grade EBB (Non-Copper	7.78	4900
Grade 13	8.78	6649_	Grade EBB (Non-Copper	<u>7.78</u>	<u>4900</u>
Grade 15	8.89 9.54	4376	Bearing)		
Grade 15 Grade 30	8.54 8.89	5605 2917	Bearing) Grade BB (Copper Bearing)	7.78	5600
Grade 20	8.89	4376	Grade BB (Copper Bearing)	7.78	5600
Grade 40	8.89	2188 CT	Grade BB (Non-Copper	7.78	5450
Grade 30	8.89	2917	Grade BB (Non-Copper	7.78	5450
Grade 55 s://standards.iteh.a		dards 1591 6ac	8 c9-Bearing) 1 fc-82dd-4178c4		
Grade 40	8.89	2188	Bearing)		
Grade 65	8.89	1346	Class C Coating:		
Grade 55 Grade 74	8.89 8.89	<u>1591</u> 1183	Class C Coating: Grade EBB (Non-Copper	7.78	4800
Grade 65	8.89	1346	Grade EBB (Non-Copper	7.78	4800
Grade 80	8.89	1094	Bearing)	<u>o</u>	1000
Grade 74	8.89	1183	Bearing)		
Grade 85	8.89	1030	Grade BB (Copper Bearing)	7.78	5400
Grade 80	8.89	1094	Grade BB (Copper Bearing)	7.78	5400
luminum, 1350 (Specifications	0.00	1000	Grade BB (Non Copper	7.78 7.79	5300
Grade 85 B230/B230M, B314, and	8.89	1030	Grade BB (Non-Copper Bearing)	<u>7.78</u>	<u>5300</u>
B609/B609M), luminum, 1350 (Specifications			Bearing)		
B230/B230M, B314, and B609/B609M), Volume Conductivity, %			Columnized Steel (Telephone and		
IACS:			Galvanized Steel (Telephone and Telegraph) (Specification A326):		
Volume Conductivity, %			Galvanized Steel (Telephone and		
IACS:			Telegraph) (Specification A326):		
61.8	2.705	430.91	Class A Coating:		
61.2	2.705	435.13	Grade 85	<u>7.83</u>	<u>5800</u>
61.0	2.705	436.56	Class A Coating:		
61.0	2.705	436.56	Class B Coating:	7.00	5000
luminum Alloys (Specifications			— Grade 85	7.83	5800
396 and B398/B398M) Iuminum Alloys (Specifications B396			— Class B Coating: Grade 135	7.83	6500
nd B398/B398M)				7.00	0000
Alloy 5005 H19	2.70	496.84	— Grade 135	7.83	6500
Alloy 5005-H19	2.70	496.84	Grade 85	7.80	5600
Alloy 6201-T81	2.69	504.43	Grade 85	7.80	5600