International Standard

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION® MEЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ® ORGANISATION INTERNATIONALE DE NORMALISATION

Methods for the assessment of departure from roundness — Measurement by two- and three-point methods

Méthodes d'évaluation des écarts de circularité -- Mesurage par les méthodes en deux et trois points **Teh STANDARD PREVIEW** First edition -- 1985-07-15 (standards.iteh.ai)

> <u>ISO 4292:1985</u> https://standards.iteh.ai/catalog/standards/sist/603f2dae-310b-4683-9b33a16fbef00045/iso-4292-1985

Ref. No. ISO 4292-1985 (E)

Descriptors : metrology, surface condition, roundness measurement, error analysis.

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council. They are approved in accordance with ISO procedures requiring at least 75 % approval by the member bodies voting TANDARD PREVIEW

International Standard ISO 4292 was prepared by Technical Committee ISO/TC 57. Metrology and properties of surfaces.

> <u>ISO 4292:1985</u> https://standards.iteh.ai/catalog/standards/sist/603f2dae-310b-4683-9b33a16fbef00045/iso-4292-1985

© International Organization for Standardization, 1985 •

Methods for the assessment of departure from roundness — Measurement by two- and three-point methods

Scope and field of application 1

This International Standard specifies methods of numerical assessment of out-of-roundness determined by the combination of two- and three-point measurement:

a) determination by means of two-point measurement (measurement of diameters);

b) determination by means of three-point measurement, summit (symmetrical or asymmetrical setting);

- en c) determination by means of three-point measurement,
- rider (symmetrical setting).

Any statement regarding an out-of-round section is incomplete plane of measurement. unless the extent and nature of the departures from roundness are given. Methods for making tasdends descriptions and ards/ See figures 3, 4, 6 and 7. evaluating them are specified in ISO 4291. a16fbef00045/iso-4

NDA

For routine or in-process inspection, the procedure specified in ISO 4291 may either be needlessly accurate or the items to be inspected may be too large to be accommodated.

The methods specified give faster and cheaper ways of assessing departures from roundness. This assessed value will deviate from the true value. The difference between the measured value and the true value can be estimated with the help of tables 2 to 8, assuming that the undulation numbers are known and of sinusoidal nature. For non-sinusoidal undulations, a theory for estimating such deviations is not yet available.

2 References

ISO 4291, Methods for the assessment of departure from roundness - Measurement of variations in radius.

ISO 6318, Measurement of roundness - Terms, definitions and parameters of roundness.

Definitions 3

For the purpose of this International Standard, the definitions given in ISO 6318 and the following apply.

3.1 two-point measurement: Measurement between coaxial anvils, one fixed and one moving in the direction of measurement.

See figures 1 and 2.

See figures 3 to 8

'КК

3.2 three-point measurement: Measurement between anvils, two fixed and one moving in the direction of measurement.

standards the two fixed anvils are situated on one side and the measuring anvil is situated on the other side of the workpiece axis in the

3.2.1 summit method : A three-point measurement in which

3.2.2 rider method: A three-point measurement in which the two fixed anvils are situated on the same side as the measuring anvil in the plane of measurement.

See figures 5 and 8.

3.3 symmetrical (three-point) setting: A setting at which the direction of measurement coincides with the bisector angle between fixed anvils.

See figures 3, 5, 6 and 8.

3.4 asymmetrical (three-point) setting: A setting at which the direction of measurement constitutes an angle with the bisector angle between fixed anvils.

See figures 4 and 7.

4 Measurement

In order to cover all possible form deviations and numbers of undulations, a complete measurement should always consist of one two-point measurement and two three-point measurements at different angles between fixed anvils. In this International Standard, several alternatives are given when choosing angles between fixed anvils (see table 1). The measurement procedures may, under certain preconditions, be amplified. See tables 2 to 4.

Table 1 – Angles between fixed anvils

Symmetrical setting	Asymmetrical setting					
Angle between fixed anvils, α	Angle between fixed anvils, α	Angle between direction of measurement and bisector of angle between fixed anvils, β				
90° and 120° 72° and 108°	120° 60°	60° 30°				

The corrected value of the departure from roundness, $\delta_{\rm r}$ is given by the equation

$$\delta = \frac{\Delta}{F}$$

where

 \varDelta is the measured departure from roundness — it is the largest value obtained from the preceding two or three combinations of angles received in the required measurements;

F is the correction factor – it has a value extracted from tables 2 to 8 (as a first approximation, F may be given a value of 2).

When measuring workpieces with a known even or odd number of undulations, the three-point measurement with a symmetrical setting at 60° angles between fixed anvils may be

symmetrical setting at 60° angles between fixed anviis may be used according to table 8. This angle is useful as it gives <u>ISO 42the measuring</u> result. Therefore it is necessary to reduce the measured values of higher correction factors than the other angles in this International Standard. When using the 60° standforce to the minimum value possible. angle, the measured value shall be corrected with the factor factor 20045/iso-4292-1985 given in table 8. **6.2 Measuring anvils**

5 Evaluation of measurement errors

Tables 5 to 7 give true factors F for any given number of sinusoidal undulations and measuring method.

If the number of sinusoidal undulations is known, the calculation of the departure from roundness is made by using the Ffactors directly from tables 5, 6, or 7 as indicated in tables 2, 3, or 4.

It is not possible to calculate exactly the departure from roundness if the number of undulations is unknown. In these cases a maximum, average and minimum value of δ can be calculated from the equation in clause 4 using the largest Δ value and the factors obtained from tables 2, 3 or 4. There is a limit on the maximum number of undulations to be used when selecting F, according to whether the number of undulations is known and whether this number is an odd or even value. This precondition is shown in tables 2 to 4.

For 90° and 120° settings, the limit is 22, which assumes that a greater number of undulations than this will not have any appreciable effect on the factor F.

For 72° and 108° settings, the limit is determined by the fact that for 19 undulations the factor *F* cannot be determined.

Factors F for three-point measurement, symmetrical setting, are given in table 8.

 NOTE — When using tables 5 to 8, other combinations of setting, besides those given in tables 2 to 4, can be made.

6 Measuring conditions and instrument

6.1 Measuring anvil static force

The static measuring force should not exceed 1 N. The force should preferably, be adjustable and set at the lowest value that will ensure continuous contact between anvil and the surface being measured.

Depending on the form of the object, the measuring anvil shall be selected from table 9, unless otherwise specified.

6.3 Fixed anvils

Point or line contact shall always be used. The following are recommended:

- for external measurement: V-support with a small radius; the median plane of the V-support shall be in the same plane as the plane of measurement.

- for internal measurement : sphere with a small radius; the median plane of the sphere shall be in the same plane as the plane of measurement.

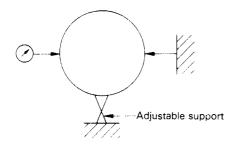
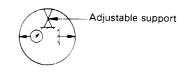



Figure 1 - Two-point measurement

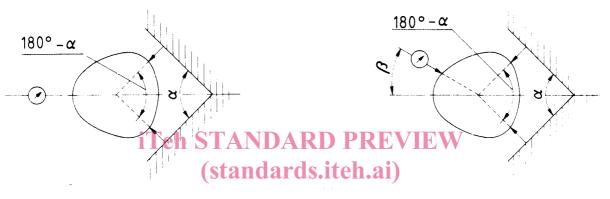
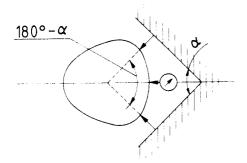



Figure 3 – Three-point measurement – <u>ISO 4292:1985</u> Summit method <u>Thtps://standalog.standards/sist/603f2dae-3106-4083-9033-</u> Asymmetrical setting a16fbef00045/iso-4292-1985

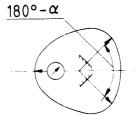


Figure 5 – Three-point measurement – Rider method – Symmetrical setting

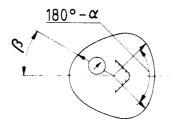


Figure 7 – Three-point measurement – Summit method – Asymmetrical setting

Figure 6 — Three-point measurement — Summit method — Symmetrical setting

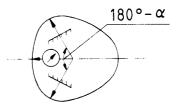


Figure 8 – Three-point measurement – Rider method – Symmetrical setting

Table 2 -	90° and	120°, symmetrical	setting
-----------	---------	-------------------	---------

Combination of settings Number of undulations, n _s	2 ¹⁾ and 3S 90° ²⁾ and 3S 120° ³⁾		2 ¹⁾ and 3R 90° ⁴⁾ and 3R 120° ⁵⁾		2 1)	3S 90° ²⁾ and 3S 120° ³⁾		3R 90° ⁴⁾ and 3R 120° ⁵⁾	
					Factors F				
$n_{\rm S}$ unknown, but assumed to be 2 < $n_{\rm S}$ < 22	max. av. min.	2,41 1,95 1,00	max. av. min.	2,41 1,98 1,00					-
$n_{\rm S}$ even but unknown, but assumed to be 2 \leq $n_{\rm S}$ \leq 22			-		2.00	max. av. min.	2,41 1,47 0,42	max. av. min.	2,41 1.70 1.00
$n_{\rm S}$ odd but unknown, but assumed to be 3 \leq $n_{\rm S}$ \leq 21						max. av. min.	2,00 1,80 1,00	max. av. min.	2.00 1,80 1,00
n _s even and known			-		2,00	exact 61		exact ⁶⁾	
n _s odd and known			-		·	exact 61		exact 6)	

1) Two-point measurement.

5)

6)

2) Three-point measurement, summit, $\alpha = 90^{\circ}$.

3) Three-point measurement, summit, $\alpha = 120^{\circ}$.

4) Three-point measurement, rider, $\alpha = 90^{\circ}$.

Three-point measurement, rider, $\alpha = 120$ Teh STANDARD PREVIEW If multiplied by factors F according to table 5. (standards.iteh.ai)

ISO 4292:1985

https://standards.iteh.ai/catalog/standards/sist/603f2dae-310b-4683-9b33a16fbef00045/iso-4292-1985

Table 3 - 72° and 108°, symmetrical setting

Combination of settings Number of undulations, n _s	2 ¹⁾ and 3S 72° ²⁾ and 3S 108° ³⁾		2 ¹⁾ and 3R 72° ⁴⁾ and 3R 108° ⁵⁾		2 1)	3S 72° ²⁾ and 3S 108° ³⁾		3R 72° ⁴⁾ and 3R 108° ⁵⁾	
					Factors F				
$n_{\rm S}$ unknown, but assumed to be 2 < $n_{\rm S}$ < 18	max. av. min.	2,62 2,09 1,38	max. av. min.	2,70 2,11 1,38					
$n_{\rm S}$ even but unknown, but assumed to be 2 \leq $n_{\rm S}$ \leq 22					2,00	max. av. min.	2,70 1,00 0, 38	max. av. min.	2.70 1.04 0,62
$n_{\rm S}$ odd but unknown, but assumed to be 3 < $n_{\rm S}$ < 17	_					max. av. min.	2,62 2,06 1,38	max. av. min.	2,62 2,06 1,38
n _s even and known			_		2,00	exact 6)		exact ⁶⁾	
n _s odd and known						exact 6)		exact 6)	

1) Two-point measurement.

2) Three-point measurement, summit, $\alpha = 72^{\circ}$.

3) Three-point measurement, summit, $\alpha = 108^{\circ}$.

4) Three-point measurement, rider, $\alpha = 72^{\circ}$.

5) Three-point measurement, rider, $\alpha = 108^{\circ}$.

6) If multiplied by factors F according to table 6.

Combination of settings Number of undulations. n _s	2 ¹⁾ and 3S 60°/30° ²⁾	2 ¹⁾ and 3S 60°/30° ²⁾ and 3S 90° ³⁾	2 ¹⁾ and 3S 120/60° ⁴⁾	2 1) and 3S 120°/60° 4) and 3S 90° 3)	2.1)	3S 60°/30° 2)	3S 120°/60° ⁴⁾
				Factors F			<u> </u>
$n_{\rm s}$ unknown, but assumed to be 2 \leq $n_{\rm s}$ \leq 10	2	max. 2,41 av. 2,04 min. 2,00	max. 2,38 av. 2,08 min. 2,00	max. 2,41 av. 2,13 min. 2,00		max. 2,00 av. 1,60 min. 0,73	max. 2,38 av. 1.69 min. 0,42
$n_{\rm s}$ unknown, but assumed to be $2 \le n_{\rm s} \le 22$		max. 2,73 av. 2,07 min. 2,00		max. 2,41 av. 2,11 min. 2,00			
$n_{\rm S}$ even but unknown, but assumed to be 2 \leq $n_{\rm S}$ \leq 22				- max	2	max. 2,73 av. 1,41 min. 0,73	max. 2,38 av. 1,45 min. 0,42
$n_{\rm S}$ odd but unknown, but assumed to be 3 < $n_{\rm S}$ < 9	2	2	2 2			2	2
$n_{\rm s}$ odd but unknown, but assumed to be 3 < $n_{\rm s}$ < 21				The mathematical and the mathematical and the second s			
n _s even and known					2	exact ⁵⁾	exact 5)
n _s odd and known			• 10-		-	exact ⁵⁾	exact 51

Table 4 - 60°/30° and 120°/60°, asymmetrical setting

1) Two-point measurement.

(i) (wo-point measurement. 2) Three-point measurement, summit, $\alpha \approx 60^{\circ}$; $\beta \approx 30^{\circ}$.

3) Three-point measurement, summit, $\alpha = 90^{\circ}$ (symmetrical setting ds.iteh.ai)

Three-point measurement, summit, $\alpha = 120^{\circ}$; $\beta = 60^{\circ}$. 4)

ISO 4292:1985

5) If multiplied by factors *F* according to table 7. <u>ISO 4292:1985</u> https://standards.iteh.ai/catalog/standards/sist/603f2dae-310b-4683-9b33a16fbef00045/iso-4292-1985

Number of undu-			Factors	F			Number of undu-			Factors	F
lations, n _s	2 ¹⁾	3S 90° ²⁾	3S 120° ³⁾	3R 90° ⁴⁾	3R 120° 5)		lations, ⁿ s	2 ¹⁾	3S 72° ²⁾	3S 108° ³⁾	3
2	2	1	1,58	1	0,42		2	2	0,47	1,38	
3	6)	2	1	2	1		3	6)	2,62	1,38	
4	2	0,41	0,42	2,41	1,58		4	2	0,38	6)	
5	_ 6)	2	2	2	2		5	6)	1	2,24	
6	2	1	0,16	1	2,16		6	2	2,38	_ 6)	
7	6)		2	_ 6)	2		7	6)	0,62	1,38	
8	2	2,41	0,42	0,41	1,58		8	2	1,53	1,38	
9	6)	6)	1	6)	1		9	_ 6)	2	6)	
10	2	1	1,58	1	0,42		10	2	0,70	2,24	
11	6)	2	6)	2	6)		11	6)	2	6)	
12	2	0,41	2,16	2,41	0,16		12	2	1,53	1,38	
13	6)	2	_ 6)	2	6)		13	6)	0,62	1,38	
14	2	1	1,58	1	0,42		14	2	2,38	6)	
15	6)	6)	1		1		15	6)	1	2,24	
16	2	2,41	0,42	0,41	1,58		16	2	0,38	6)	
17	6)	6)	2	6)	2		17	_ 6)	2,62	1,38	
18	2	1	0,16	, 1	2,16		18	2	0,47	1,38	
19	6)	2	2	2	2		19	6)	6)	_ 6)	
20	2	0,41	0,42	2,41	1,58		20	2	2,70	2,24	
21	6)	2	1	2			21		6)	6)	
22	2	1	1,58	Ieh S	0/42	DA	K 22	K	C 0,47 C	1,38	

Table 5 — Factors F for 90° and 120°, symmetrical setting

1) Two-point measurement.

Three-point measurement, summit, $\alpha = 90^{\circ}$. 2)

(standards Two=point measurement. 2) Three-point measurement, summit, $\alpha = 72^{\circ}$.

Three-point measurement, summit, $\alpha = 120^{\circ}$. 3)

ISO 423)2: Three-point measurement, summit, $\alpha = 108^{\circ}$.

4) a16fbef00045/iso-4292-1985 5) Three-point measurement, rider, $\alpha = 108^{\circ}$.

Three-point measurement, rider, $\alpha = 120^{\circ}$. 5)

6) In this case the method gives no indication of deviation from roundness.

6) In this case the method gives no indication of deviation from roundness.

Table 6 — Factors F for 72° and 108°, symmetrical setting

3R 72° ⁴⁾

1,53

2,62

2,38

0,38

0,62

0,47

2,70

0,47

0,62

0,38

2,38

2,62

1,53

_ 6)

0,70

_ 6)

1,53

1

2

2

1

3R 108° 5)

0,62

1,38

2,24

1,38

0,62

__ 6)

0,24 __ 6)

0,62

1,38

2,24

1,38

0,62

____6)

0,24

_ 6)

0,62

2

2

2

2

3R 60° 2) 2 3 2 _ 3) 1 __ 3) 2 3 2 _____3) 1 _ 3) 2 3 2 3) 1 ____3) 2 3 2

Table 8 – Factors F for 60°, symmetrical setting

Number of		Factors F			mber of ulations,	Fa	actors F
undulations, ⁿ s	2 1)	3S 120°/60° 2)	3S 60°/30° 3)	una	n _s	3S 60° 1)	
2	2	2,38	1,41		2	3)	
3	_ 4)	2	2		3	3	
4	2	1,01	1,41	-	4	3)	
5	4)	2	2		5	3)	
6	2	0,42	0,73		6	3	
7	4)	2	2		7	3)	
8	2	1,01	1,41		8	3)	
9	4)	2	2		9	3	
10	2	2,38	1,41		10		
11	4)	4)	_ 4)		11		
12	2	1,58	2,73		12	3	
13	4)	4)	_ 4)		13	3)	
14	2	2,38	1,41		14	3)	
15	4)	2	2		15	3	
16	2	1,01	1,41		16	3)	
17	4)	2	2		17	_ 3)	
18	2	0,42	0,73		18	3	
19	4)	2	2		19	3)	
20	2	1,01	1,41		20	3)	
21	_ 4)	2	2		21	3	
22	2	T238 S		RD PF	22 VIE	W _ 3)	

Table 7 — Factors F for 120°/60° and 60°/30°, asymmetrical setting

1) Two-point measurement. 1) Three-point measurement, summit, $\alpha = 60^{\circ}$.

2) Three-point measurement, summit, $\alpha = 120^{\circ}$; (standards it the point measurement, rider, $\alpha = 60^{\circ}$.

3) Three-point measurement, summit, $\alpha = 60^{\circ}$; $\beta = 30^{\circ}$. 3) In this case the method gives no indication of deviation from

4) In this case the method gives no indication of deviation from roundness. ISO 4292:1950ndness. ISO 4292:1950ndness. ISO 4292:1950ndness.

a16fbef00045/iso-4292-1985

	Dir	nensions in millimetre
Surface form	Anvil radius	Surface radius
Convex surface (spherical)	2,5	All
Convex edge (cylindrical)	2,5	All
Concave surface (spherical)	2,5	≥ 10
Concave edge (cylindrical)	2,5	> 10
Concave surface (spherical)	0,5	< 10
Concave edge (cylindrical)	0,5	< 10

Table 9 - Measuring anvils

NOTE – In the case of the external measurement using the two-point method, the flat type anvil (radius = ∞) shall be used.