INTERNATIONAL STANDARD

Manganese ores and concentrates – Determination of manganese content – Potentiometric method

INTERNATIONAL ORGANIZATION FOR STANDARDIZATIONOME # AVAILABLY OF CHUISALUM TO CTAHDAPTUSALUMOORGANISATION INTERNATIONALE DE NORMALISATION

Minerais et concentrés de manganèse - Dosage du manganèse - Méthode potentiométrique

First edition – 1978-08-01eh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 4298:1978</u> https://standards.iteh.ai/catalog/standards/sist/72019828-375f-4e23-9bc1-29e0095b75eb/iso-4298-1978

Ref. No. ISO 4298-1978 (E)

UDC 553.32 : 546.711 : 543.257

Descriptors : manganese ores, chemical analysis, determination of content, manganese, potentiometric analysis.

4298

FOREWORD

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO member bodies). The work of developing International Standards is carried out through ISO technical committees. Every member body interested in a subject for which a technical committee has been set up has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council.

International Standard ISO 4298 was developed by Technical Committee ISO/TC 65, *Manganese and chromium ores*, and was circulated to the member IEW bodies in May 1977.

(standards.iteh.ai)

It has been approved by the member bodies of the following countries :

		<u>ISO 4298:1978</u>	
Australia	http:Hungaryrds.iteh.ai/catalog/staRomaniast/72019828-375f-4e23-9bc1-		
Austria	India	29e0095h7South Africa, Bep. of	
Bulgaria	Iran	Turkey	
Czechoslovakia	Italy	United Kingdom	
France	Japan	U.S.S.R.	
Germany	Poland	Yugoslavia	

No member body expressed disapproval of the document.

This International Standard cancels and replaces ISO Recommendation R 319-1963, of which it constitutes a technical revision.

© International Organization for Standardization, 1978 •

Printed in Switzerland

INTERNATIONAL STANDARD

Manganese ores and concentrates - Determination of manganese content - Potentiometric method

1 SCOPE AND FIELD OF APPLICATION

This International Standard specifies a potentiometric method for the determination of the manganese content of manganese ores and concentrates having a manganese content equal to or greater than 15 % (m/m).

It should be read in conjunction with ISO 4297.

2 REFERENCE

ISO 4297, Manganese ores and concentrates - Methods of chemical analysis -- General instructions. A N DAR

3 PRINCIPLE

Decomposition of a test portion by treatment with hydro 1978 5.11 Acetone (CH3COCH3). chloric, nitric, perchloric and hydrofluoric acids. Separation of the insoluble residue, and reservation of the filtrate as the main solution. Ignition of the residue, fusion with sodium carbonate, leaching of the melt with hydrochloric acid and combination with the main solution. Addition of an aliquot portion of the resulting solution to sodium pyrophosphate solution, adjustment of the pH to 7,0, and potentiometric titration with standard volumetric potassium permanganate solution.

4 REACTION

The method is based on the oxidation of manganese(II) ions to manganese(III) ions by potassium permanganate in a neutral medium in the presence of sodium pyrophosphate :

 $4Mn^{2+} + MnO_4^{-} + 8H^{+} - - - 5Mn^{3+} + 4H_2O$

Iron and other interfering elements are eliminated by binding them into soluble pyrophosphate complexes.

5 REAGENTS

5.1 Sodium carbonate, anhydrous (Na₂CO₃).

5.2 Sodium carbonate, 50 g/l solution.

5.3 Sodium pyrophosphate decahydrate (Na₄P₂O₇. 10H₂O), 120 g/l solution.

This solution shall be prepared 24 h before use.

5.4 Hydrochloric acid, ρ 1,19 g/ml.

5.5 Hydrochloric acid, diluted 1 + 4.

- 5.6 Hydrofluoric acid, ρ 1,14 g/ml.
- 5.7 Perchloric acid, p 1,51 g/ml.
- **5.8** Nitric acid, *ρ* 1,40 g/ml.

5.9 Sulphuric acid, p 1,84 g/ml.

(standards.ites 10a Su)phuric acid, diluted 1 + 1.

ist/72019828-375f-4e23-9bc1-1298 5.12 Potassium permanganate (KMnO₄), degree of purity

not less than 99,5 %, recrystallized.

Dissolve 250 g of potassium permanganate (purity not less than 99,5 %) with 800 ml of hot distilled water (90 °C) in a 1 000 ml beaker. Filter the solution under vacuum through a filter crucible with a sintered glass plate No. 3. Cool the filtered solution in ice water to 10 °C, while stirring vigorously. Allow the fine-grained precipitate to settle. Then pour out the solution, transfer the crystalline mass to the crucible with sintered glass plate No. 3 and place under suction. Repeat the recrystallization.

After thorough suction, transfer the crystalline mass thus obtained to a glass or porcelain dish and dry in air in the dark, protecting from dust. When the crystalline mass no longer sticks together when crushed with a glass rod, dry it at 80 to 100 °C for 2 to 3 h in a drying oven. Then transfer it to a stoppered brown glass bottle.

permanganate Potassium thus obtained contains 34,76 % (m/m) of manganese and is non-hygroscopic.

5.13 Manganese, 1 g/l standard solution.

Place 10 g of electrolytic manganese (purity not less than 99,95 %) in a 400 or 500 ml beaker. Add a mixture of 50 ml of water and 5 ml of the nitric acid (5.8) and leave for a few minutes until the surface becomes bright. Wash the treated manganese six times with water, then with the acetone (5.11) and dry at 100 °C for 10 min.

1

Place 1 g of the treated electrolytic manganese in a 400 or 500 ml beaker, and add 20 ml of the sulphuric acid (5.10) and about 100 ml of water. Boil the solution for a few minutes, cool, transfer to a 1 000 ml one-mark volumetric flask, dilute to the mark with water and mix.

1 ml of this standard solution contains 0,001 g of manganese.

5.14 Potassium permanganate (KMnO₄), approximately 0,1 N standard volumetric solution.

Dissolve 3,20 g of potassium permanganate in 1 000 ml of water, allow to stand for 6 days, then transfer to a brown glass bottle and mix.

5.14.1 Standardization with the standard manganese solution (5.13)

Transfer 100 ml of the standard manganese solution (5.13) into a 500 to 800 ml beaker and add, while stirring, 250 ml of the solution to 7 with the hydrochloric acid (5.5) [check the pH using either a pH meter or the bromothymol blue indicator (5.15)] and titrate with the potassium permanganate solution (5.14) using the pH meter (6.1) until the maximum peak deflection on the voltmeter is observed.

Carry out a blank test, omitting the standard manganese rds. solution.

The strength of the potassium permanganate solution, $T_{KSO} 4298:1978$ solution; given by the formula

$$T = \frac{m_1}{V_1 - V_2}$$

where

 m_1 is the mass, in grams, of manganese present in the aliquot portion of the standard manganese solution (5.13);

 V_1 is the volume, in millilitres, of the potassium permanganate solution used for titration of the standard manganese solution;

 V_2 is the volume, in millilitres, of the potassium permanganate solution used for titration of the blank test solution.

5.14.2 Standardization with the potassium permanganate (5.12)

all and the

Place 1,5 g of the potassium permanganate (5.12) in a 250 or 300 ml fluoroplastic or polytetrafluorethylene beaker, add 30 to 40 ml of water and mix thoroughly. Add 20 ml of the hydrochloric acid (5.4), cover the beaker with a watch-glass and heat. When the reaction is complete, rinse the watch-glass into the beaker. Add 10 ml of the perchloric acid (5.7) and 20 ml of the hydrofluoric acid (5.6) to the cooled solution and evaporate until dense white fumes of perchloric acid appear. Cool the solution, add 20 ml of the hydrochloric acid (5.5) and heat until the pink colour of the solution is discharged. After cooling, transfer the solution to a 500 ml one-mark volumetric flask, dilute to the mark with water and mix. Take a 100 ml aliquot portion and transfer it with continuous stirring into a 500 to 800 ml beaker containing 250 ml of the solution to 7 with the hydrochloric acid (5.5) or the solution to 7 with the hydrochloric acid (5.5) or the solution carbonate solution (5.2) [check the pH using either a pH meter or the bromothymol blue indicator (5.15)] and titrate with the potassium permanganate solution (5.14) using the pH meter (6.1) until the maxinum peak deflection on the voltmeter is observed.

Carry out a blank test, omitting the solid potassium permanganate.

The strength of the potassium permanganate solution, T, is given by the formula

$$T = \frac{m_2 \times 0.347 \, 6}{V_3 - V_4}$$

where

 m_2 is the mass, in grams, of the potassium permanganate (5.12) present in the aliquot portion of solution taken for titration;

V₃ is the volume, in millilitres, of the potassium permanganate solution used for titration of manganese;

manganate solution used for titration of the blank test

https://standards.iteh.ai/catalog/standards/s013470698is8 the5 conversion factor from potassium per-29e0095b75eb/iso-4manganate to manganese.

5.15 Bromothymol blue indicator, 0,4 g/l aqueous solution.

6 APPARATUS

Ordinary laboratory apparatus and

6.1 pH meter, fitted with one of the following pairs of electrodes :

- platinum-saturated calomel;
- platinum-tungsten;
- platinum-platinum;
- glass.

7 PROCEDURE

7.1 Decomposition of test portion

Place a 1 g test portion in a 250 or 300 ml fluoroplastic or polytetrafluorethylene beaker, moisten with a few drops of water, add 20 ml of the hydrochloric acid (5.4) and 2 to 3 ml of the nitric acid (5.8), heat until nitrous fumes cease to be evolved, and cool. Add 10 ml of the perchloric acid (5.7) and heat, gently at first, and then strongly to decompose the ore. Cool the solution, add 10 ml of the hydrofluoric acid (5.6) and evaporate until dense white fumes of perchloric acid appear. Cool the solution, add 20 ml of the hydrochloric acid (5.5) and heat until the salts dissolve. Filter the insoluble residue on a medium texture filter containing a small amount of paper pulp, and wash with warm water ten to twelve times. Reserve the filtrate (A).

7.2 Treatment of residue

Place the filter containing the residue in a platinum crucible, dry, ignite and fuse with 2 g of the sodium carbonate (5.1). Cool the crucible containing the melt, place in a 250 ml beaker, add 10 ml of the hydrochloric acid (5.4) and 30 to 40 ml of water, and heat to dissolve the melt. Remove the crucible and rinse it into the beaker with water. Cool the solution and add it to the filtrate A.

7.3 Titration

Transfer the combined solution into a 500 ml one-mark volumetric flask, dilute to the mark with water and mix.

Take a 100 ml aliquot portion of the solution and transfer it with continuous stirring into a 500 to 800 ml beaker containing 250 ml of the sodium pyrophosphate4solu1978 tion (5.3). https://standards.iteh.ai/catalog/standards/sist/7

The solution obtained should be clear 2960095b75ch/ss-4298 formed, it is necessary to take either a smaller aliquot portion or a greater amount of sodium pyrophosphate solution.

Adjust the pH of the solution to 7 with the hydrochloric acid (5.5) or the sodium carbonate solution (5.2) [check the pH using either a pH meter or the bromothymol blue indicator (5.15)] and titrate with the potassium permanganate solution (5.14) using the pH meter (6.1) until the maximum peak deflection on the voltmeter is observed.

8 EXPRESSION OF RESULTS

8.1 Calculation

The manganese (Mn) content is given, as a percentage by mass, by the formula

$$\frac{T(V_5 - V_6) \times 100}{m_3} \times K$$

where

T is the strength of the potassium permanganate solution (5.14), in grams of manganese per millilitre of the solution;

 V_5 is the volume, in millilitres, of the potassium permanganate solution (5.14) used for the titration of the aliquot portion of the test solution;

 V_6 is the volume, in millilitres, of the potassium permanganate solution (5.14) used for the titration of the blank test solution;

 m_3 is the mass, in grams, of the test portion of ore or concentrate corresponding to the aliquot portion of the test solution;

K is the conversion factor for the expression of the manganese content on the dry basis.

8.2 Permissible tolerances on results of parallel determinations

019828-375f-4e23-91 1978	Permissible tolerance		
Manganese content	Three parallel determinations	Two parallel determinations	
% (m/m)	%(m/m)	% (m/m)	
From 15 to 40	0,30	0,25	
From 40 to 50	0,40	0,30	
Over 50	0,50	0,40	

iToh STANDAR

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 4298:1978

https://standards.iteh.ai/catalog/standards/sist/72019828-375f-4e23-9bc1-29e0095b75eb/iso-4298-1978

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 4298:1978</u> https://standards.iteh.ai/catalog/standards/sist/72019828-375f-4e23-9bc1-29e0095b75eb/iso-4298-1978

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 4298:1978</u> https://standards.iteh.ai/catalog/standards/sist/72019828-375f-4e23-9bc1-29e0095b75eb/iso-4298-1978