International Standard

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION●MEЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ●ORGANISATION INTERNATIONALE DE NORMALISATION

Flat-top chains and associated chain wheels for conveyors

Chaînes charnières et roues pour convoyeurs

Second edition — 1983-12-01

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 4348:1983 https://standards.iteh.ai/catalog/standards/sist/1fca5d9a-7ee0-4e4b-840c-4c41866b70d9/iso-4348-1983

UDC 621.855: 621.867.1

Ref. No. ISO 4348-1983 (E)

Descriptors: chains, conveyor chains, flat-top chains, sprocket wheels, specifications, dimensions, nomenclature, designation, marking.

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of developing International Standards is carried out through ISO technical committees. Every member body interested in a subject for which a technical committee has been authorized has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council.

International Standard ISO 4348 was developed by Technical Committee ISO/TC 100, Chains and chain wheels for power transmission and conveyors rds.iteh.ai)

This second edition was submitted directly to the ISO Council, in accordance with clause 6.11.2 of part 1 of the Directives for the technical work of ISO. It cancels and replaces the first edition (i.e. ISO 4348 1978); which mad been approved by the 7ee0-4e4b-840c-4c41866b70d9/iso-4348-1983 member bodies of the following countries:

Sweden

United Kingdom

Turkey

USA

USSR Yugoslavia

Australia Italy Japan Belgium Korea, Rep. of Czechoslovakia Finland Mexico France

Netherlands Romania

South Africa, Rep. of India

Ireland Spain

Germany, F. R.

No member body expressed disapproval of the document.

Flat-top chains and associated chain wheels for conveyors

iTeh STANDARD PREVIEW (standards.iteh.ai)

0 Introduction

S or D depending upon whether the chains are of single-hinge ISO 4348:1980r double-hinge design.

This International Standard lays down the dimensions of plands/sist/1fca5d9a-7ee0-4e4b-840c-selected range of flat-top chains which are manufactured in invarious countries and which are in world-wide use. Flat-top chains are also known as "slat band" and "table top" chains.

It should be noted that the specified dimensions for the chains are based upon inch units.

1 Scope and field of application

This International Standard specifies the characteristics of flattop chains and associated chain wheels as used principally on conveyors for bottles. It covers dimensions, limits for interchangeability, measuring loads and minimum ultimate tensile strengths.

2 Chains

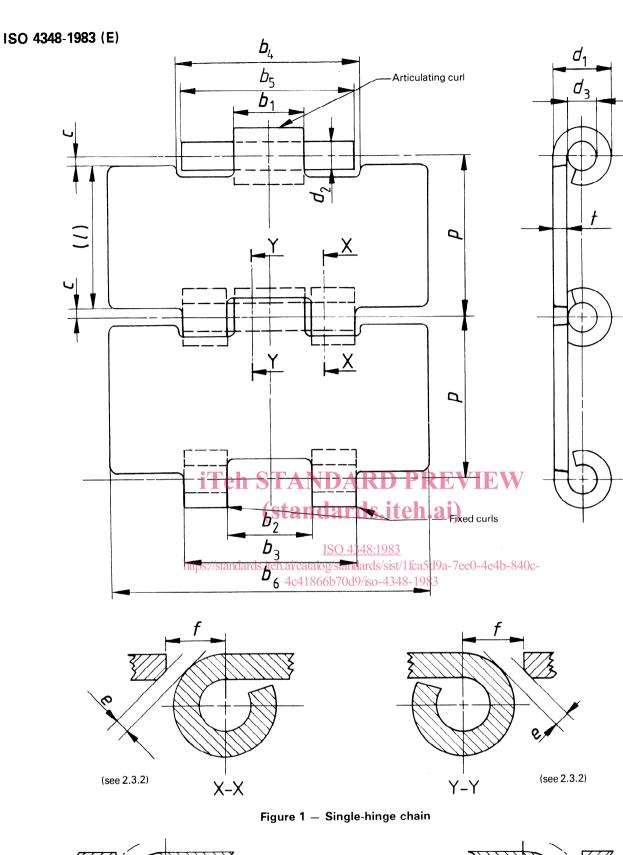
2.1 Nomenclature

This International Standard specifies two types of chain :

- single-hinge (see figure 1 and tables 1 and 1M);
- double-hinge (see figure 4 and tables 2 and 2M).

2.2 Designation

Flat-top chains shall be designated by the letter C followed by the nominal slat width expressed in units of 0.25 in, followed by C12S designates a single-hinge chain with a nominal slat width of 3.0 in.


2.3 Dimensions

- **2.3.1** The chains shall conform to the dimensions given in tables 1, 1M, 2 and 2M. Maximum and minimum dimensions are specified to ensure interchangeability of slats produced by different manufacturers.
- **2.3.2** Hinge clearance dimensions e and f are both based on the maximum values of t and d_1 as given in tables 1 and 1M, and must be recalculated for any other values.

The basis for the calculations shall be that no part of an adjacent slat may come within the swept clearance k as shown in figures 2 and 3.

2.3.3 The dimensions d_2 and d_3 given in tables 1 and 1M ensure free movement of the articulating curls around the bearing pin.

The methods of torsional and axial bearing pin restraint within the fixed curls shall be at the manufacturer's discretion.

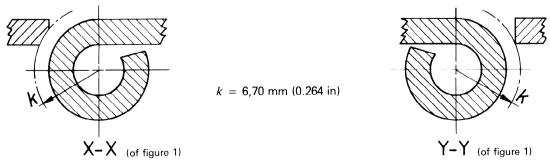


Figure 2 — Hinge clearance of chamfered slat

Figure 3 — Hinge clearance of slat with square edge

ITEP STANDARD PREVIEW

Table 1 - Chain dimensions, measuring-loads and tensile strength of single-hinge flat-top chains (inch-pound units)

19	Ultimate tensile strength	min.	lbf	pon		2 250	ō	-noisc	t steel	15)	 88 	jo	25)	1 400
18	Measur- ing load		lpt	(in carbon	steel	45	or	in corrosion-	resistant steel	grade 15)	8	ō	grade 2 ⁵⁾	28
17	earance linear		. <u>⊆</u>							0.200				
16	Hinge clearance tangen-	min.	. <u>⊆</u>							900.0				
15	Slat clear- ance	c min.	Ē							0.016				
14	Slat length ²⁾	7	.⊑				, .			1.468				
13	vidth 6		Ē			2 000	3.000	3.250	3.500	4.000	4.500		000.9	7.500
12	Slat width $b_{ m E}$		ü			(3,040	9.040	3.290	3.540	4.040	4 540		6.040	7.540
11	Width over bearing pins	^b 5 max.	Ë						-	1.677				
01	Slat hinge clear- ance	b4 min.	ï							1.657				
6	a-Width-4 over fixed curls	<i>b</i> 3 тах.	Ē							1.656				
88	Stween Spetween fixed curls	<i>b</i> 2 min.	Ē							0.791				
7.43.48.10	Width tanguerds/sis 70arbicue43 lating	b ₁ max.	ri							0.787				
9	u/catalog/s	f max.	.⊑							0.132				
5	Articu- dataingen curl bore	d_3 min.	Ŀ							0.252				
4	htBearingan pin diameter	d_2 max.	ŗ							0.251				
3	Pitch ¹⁾ diameter	d_1 max.	Ē							0.517		*		
2	Pitch ¹⁾	d	.⊆							1.50				
٦	ISO chain	number				(0,0)	C IZ S	C 13 S	C 14 S	C 16 S	28.5	2	C 24 S	(3 0E)

1) Chain pitch p is a theoretical dimension used in calculating strand lengths and chain wheel dimensions; it is not intended for the inspection of individual links.

2) Dimension I is quoted for reference only and will be dependent upon actual dimension c.

3) See 2.3.2 according to the option chosen.

4) Dimension given only for guidance in tool manufacture.

5) These grades are purely arbitrary and relate to the appropriate tensile strength of the corrosion-resistant steel. The manufacturer should be consulted for details of the corrosion-resisting properties of the steels.

Table 1M Schain dimensions, measuring loads and tensile strength of single-hinge flat-top chains (metric units)

	at e	<u> </u>					_					_			10
19	Ultimate	tensile strength	min.	daN	in carbon	steel	1 000	ō	in corrosion-	resistant steel	grade 1 ⁵⁾	8	ō	grade 2 ⁵⁾	625
18	N	ing load		daN) in c	S	20	ō	in co	resista	grac	9	or	grac	12
17	earance	linear 3)4)	min.	mm							5,08				
16	Hinge clearance	tangen- tial ³⁾	e min.	mm							0,14				
15	Slat	clear- ance	c min.	mm							0,41				
41	į	length ²⁾	1	m E					_	-	37,28				
13	idth			mm			100 37	3,0	82,60	98,90	101,60	27.30	8,4	152,40	190,50
12	Slat width	b_{6} maximum \mid nominal		mm			02 17	23,11	83,60	06,88	102,60	116 20	06,61	153,40	191,50
11	Width	bearing pins	b_5 max.	mm					-		42,60				
10	Slat hinge	ance 4lwi8th0c-	b_4 min.	mm							42,10				
6	Width	fixed a-9wts-4e	b_3 max.	mm							42,05				
1408h	Width between	83fixed sist/fut85d9	.348 ₆₂ 1983 min.	mm							20,10				
r-Ac	Width) 4 348:19 latings:19 stanclarids/	70d8/iso-4 max.	mm							20,00				
fafide	Slat	thicknesss ai/catalog/s	4c41,866b max.	mm							3,35				
5 (a	Articu- lating	bore thickness	d_3 min.	mm							6,40				
4	Bearing	diameter nttps://star	d ₂ max.	mm				-			6,38				
3	Curl	diameter	d ₁ max.	mm							13,13				
2	Ditch 1)		d	шш							38, 10				
-		chain					13.0	ر بر د	C 13 S	C 14 S	C 16 S	0 95 0	ر م د د	C 24 S	C 30 S

1) Chain pitch p is a theoretical dimension used in calculating strand lengths and chain wheel dimensions; it is not intended for the inspection of individual links.

²⁾ Dimension / is quoted for reference only and will be dependent upon actual dimension c.

³⁾ See 2.3.2 according to the option chosen.

⁴⁾ Dimension given only for guidance in tool manufacture.

These grades are purely arbitrary and relate to the appropriate tensile strength of the corrosion-resistant steel. The manufacturer should be consulted for details of the corrosion-resisting properties of the steels. 2

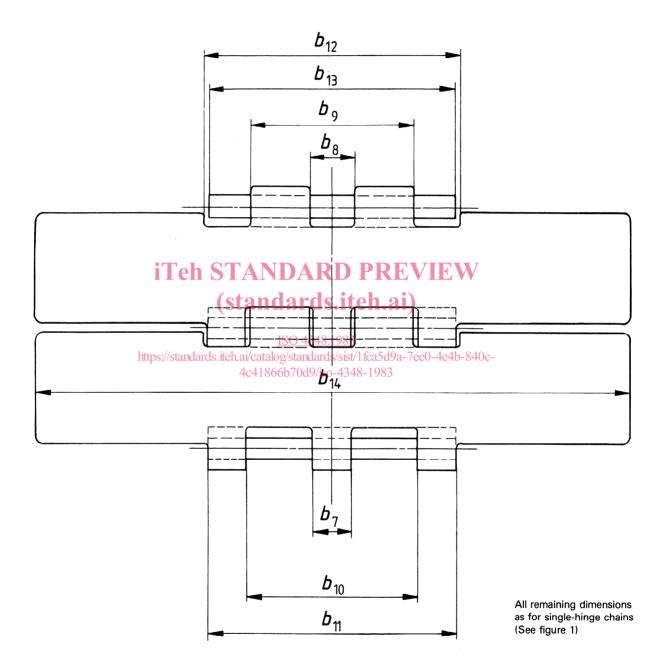


Figure 4 — Double-hinge chain

Table 2 — Chain dimensions, measuring loads and tensile strength of double-hinge flat-top chains (inch-pound units)

	2	3	4	5	9	7	8	6	10	11	12
	Width over	Width between	Width over	Width between	Width over	Slat hinge	Width over	Slat width	vidth	Measuring	Ultimate
	centre fixed	articulating	articulating	outer fixed	outer fixed	clearance	bearing	b ₁₄		load	tensile strength
	<i>b</i> 7	l Leu		b10	911	612	b13	тахітит	nominai		
	max.	min.	max.	D Tro This. 140	Xeu	min.	max.				min
	Ŀ	Ξ			II.a.II	ŗ	ui	ni	ŗ	lbf	lbf
 			<u> </u>	0.4246.1002						in carbo	l in carbon steel
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 4340	0	0				8	4 500
		https://standard	s.iten.	standard	18/8181/11ca>d9a- / ee0-4e4b-840c-	240-840c-				in con	in corrosion-
	0.531	0.539	2006 866b	70d9/ssm4348-	1983 3. 169	3.173	3.190	7.540	7.500	resistar	resistant steel
										grac	grade 1
										72	3 600
										grac	grade 2
										98	2 800
_	_										

Table 2M — Chain dimensions, measuring loads and tensile strength of double-hinge flat-top chains (metric units)

12	Ultimate tensile	strength min	daN	in carbon steel 2 000 in corrosion- resistant steel grade 1 2 1 600 grade 2 5 1 250
11	Measuring		daN	40 in carbo 40 in corr resistar grac grac grac 25
10	idth 4	nominal	mm	190,50
6	Slat width	maximum	mm	191,50
8	Width over bearing	pins b13 max.	mm	81,00
7	Slat hinge clearance	width b_{12} min.	mm	80,60
9	Width over outer fixed	curls b_{11} max.	mm	80,50
а	Width between outer fixed	curts b_{10} min.	mm	53,60
4	Width over articulating		mm	53,50
3	Wid	$\frac{curls}{b_8}$ min.	mm	13,70
2	Width over centre fixed	curl b_7 max.	mm	13,50
-		ISO chain number		O 88

2.4 Minimum ultimate tensile strength

2.4.1 The minimum tensile strength is the minimum strength of samples tested to destruction in tensile loading, as defined in 2.4.2. This strength is not a working load. It is intended primarily as a comparative figure between chains of various materials and constructions. For application information, the manufacturers or their published data should be consulted.

2.4.2 A tensile load shall be applied to the ends of a chain length, containing at least five free pitches, by means of shackles permitting free movement on both sides of the chain centre line, in the normal plane of articulation.

Failure shall be considered to have occurred at the first point where increasing extension is no longer accompanied by increasing load, i.e. the first crest on the load/extension diagram.

NOTE — This will indicate failure in the terms of this International Standard whether hinges break or uncurl.

2.4.3 The tensile test shall be considered a destructive test. Even though a chain may not fail when subjected to the minimum ultimate tensile load, as given in table 1, 1M, 2 or 2M, it will have been stressed beyond the yield point and will be unfit for continuous.

Wheels for flat-top chains are provided with two effective sets of teeth each having a number of teeth z, the location of the tooth spaces of the second set being midway between those of the first. The total number of teeth is z_1 . With such double-cut sprockets, z_1 will be an integer, but z will be fractional if z_1 is an odd number.

The effective number of teeth z is always the value used in rim diameter calculations.

3.2 Diametral dimensions and tooth shape

3.2.1 Nomenclature

The nomenclature of diametral dimensions and tooth shape is given in figure 5.

3.2.2 Dimensions of the diameters

NOTE — Values for p and d_1 will be found in tables 1 and 1M.

fit for service. **iTeh STANDARD PREVIEW**3.2.2.1 Pitch circle diameter

2.5 Length accuracy

(standards.iteh.ai)

The standard length for measurement shall be 40 pitches $d = \frac{p}{\sin \frac{180^{\circ}}{\sin \frac{180^{\circ}}{\cos \frac$

The chain shall be supported throughout its entire length and /iso-4348-1983 the measuring load specified in tables 1, 1M, 2 and 2M.

To comply with this International Standard, the nominal standard length shall be subject to a tolerance of $^+$ 0,3 %.

2.6 Marking

Chains shall be marked with:

- a) the manufacturer's name or trade mark;
- b) the ISO chain number (see column 1 of tables 1, 1M, 2 and 2M).

3 Chain wheels (sprockets)

 $\ensuremath{\mathsf{NOTE}}\xspace$ — The following applies to single-hinge and double-hinge chains.

3.1 Nomenclature

Chain wheel nomenclature is covered below.

The given chain wheel design is proposed as a minimum and is the less expensive approach since only one cutter is used. There are other tooth forms which optimize load absorption and allowable chain elongation. For the latter designs, the chain and sprocket manufacturer should be consulted.

3.2.2.2 Measuring pin diameter

$$d_{R} = d_{1}$$

3.2.2.3 Maximum root diameter

$$d_f \max = d - d_1$$

3.2.2.4 Measurement over measuring pins (see figure 6)

$$M_{\rm R}$$
 for EVEN numbers of teeth = $d + d_{\rm R}$

$$M_{\rm R}$$
 for ODD numbers of teeth = $d \cos \frac{90^{\circ}}{z} + d_{\rm R}$

For an EVEN number of teeth, measurement shall be made over pins inserted in diametrically opposed tooth spaces.

For an ODD number of teeth, measurement shall be made over pins inserted in the tooth space most nearly diametrically opposite.

During measurement, the pins shall always be in contact with the working faces of the teeth.