

Edition 1.0 2020-11

INTERNATIONAL STANDARD

Internet of things (IoT) – Data exchange platform for IoT services – Part 1: General requirements and architecture (standards.iteh.ai)

ISO/IEC 30161-1:2020 https://standards.iteh.ai/catalog/standards/sist/de945703-f353-4205-8861-5a939fc9abed/iso-iec-30161-1-2020

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2020 ISO/IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about ISO/IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland Tel.: +41 22 919 02 11 info@iec.ch www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or **CISPR** need further assistance, please contact the Customer Service **Customer Service** Centre: sales@iec.ch.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 000 terminological entries in English and French, with equivalent terms in 16 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary

67 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR

ISO/IEC 30161-1:2020 https://standards.iteh.ai/catalog/standards/sist/de945703-f353-4205-8861-5a939fc9abed/iso-iec-30161-1-2020

Edition 1.0 2020-11

INTERNATIONAL STANDARD

Internet of things (IoT) - Data exchange platform for (oT services -Part 1: General requirements and architecture ai)

ISO/IEC 30161-1:2020 https://standards.iteh.ai/catalog/standards/sist/de945703-f353-4205-8861-5a939fc9abed/iso-iec-30161-1-2020

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 35.020

ISBN 978-2-8322-8997-6

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FOREWORD
INTRODUCTION
1 Scope
2 Normative references6
3 Terms and definitions6
4 Abbreviated terms
5 Overview of IoT services
6 Network configurations for IoT services
6.1 Overview of network configurations for IoT7
6.2 Network models for an IoT DEP
7 Data exchange platform in IoT reference architecture
7.1 General
7.2 Position of an IoT DEP in IoT reference architecture
7.2.1 Functions of the IoT DEP
7.2.2 Positions of the IoT DEP
 7.3 Operation of an IoT DEP in an IoT system
8.1 General iTeh STANDARD PREVIEW 13
8.2 Requirements of functional blocks
8.2.2 Communication access control (CAC)
8.2.3 Data control <u>ISO/IEC 30161-12020</u> https://standards.itelt.ai/catalog/standards/sist/de945703-f353-4205-886116
8.2.4 Data translation
8.2.5 IoT control
8.2.6 IoT management16
8.2.7 Adaptation
8.3 Communication protocols
8.4 Service mapping
9 Operations of an IoT DEP
Annex A (normative) Implementation guideline for an IoT DEP
A.1 General
A.2 Abstraction of lower layer in IoT DEP
Annex B (informative) Typical communication protocols for ICN
Annex C (informative) Applied use cases based on an IoT data exchange platform
C.1 General
C.2 Farm product tracking use case: Actors and information exchange
C.3 IoT endpoint monitoring systems
C.4 IoT-based energy management system for industrial facilities
Bibliography
Figure 1 – Overview of network configurations
Figure 2 – Service types of the network configurations

Figure 3 – Redef	ined configuration	types for an lo	DT DEP		9
Figure 4 – Locati	ons of IoT DEP fu	nctions in the I	oT reference models	·	10

Figure 5 – Cases of an IoT DEP and relationship between IoT and other services	11
Figure 6 – Operations of the IoT DEP in Case A	11
Figure 7 – Operations of an IoT DEP in Case B	12
Figure 8 – Operations of an IoT DEP in Case C	12
Figure 9 – Operations of an IoT DEP in Case D	12
Figure 10 – Functional blocks in an IoT DEP	13
Figure 11 – Functional blocks in an IoT DEP	14
Figure 12 – Layer structures of the communication platforms	15
Figure 13 – Independence between CAC and lower layer protocols	
Figure 14 – Co-existing architecture between IoT applications and others	15
Figure 15 – IoT DEP connections over communication protocols	16
Figure 16 – Connections between IoT users and IoT services with an IoT DEP	17
Figure 17 – Connections between IoT users and IoT services without an IoT DEP	17
Figure 18 – Operation of information control using an IoT DEP	18
Figure A.1 – Configuration of entity including an IoT DEP without adaptation	19
Figure A.2 – Configuration of entity including an IoT DEP with adaptation	19
Figure A.3 – Implementation on support of multiple access protocols in an IoT DEP	20
Figure A.4 – Implementation on support of multiple socket interfaces in an IoT DEP	20
Figure A.5 – Implementation on support of multiple socket interfaces in an IoT DEP	
with adaptation function	
Figure B.1 – Types of ICN technologies	
Figure C.1 – Diagram of farm product <u>tracking system</u> 20	23
Figure C.2 – Diagram of farm product tracking system 5a939tc9abed/so-icc-30161-1-2020	24
Figure C.3 – Diagram of IoT-based energy management system for industrial facilities	25
Figure C.4 – Extracted key blocks of Figure C.3	25

Table 1 – Relationship between functional blocks and cases of an IoT DEP......13

INTERNET OF THINGS (IoT) – DATA EXCHANGE PLATFORM FOR IOT SERVICES – Part 1: General requirements and architecture

FOREWORD

- 1) ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work.
- 2) The formal decisions or agreements of IEC and ISO on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC and ISO National bodies.
- 3) IEC and ISO documents have the form of recommendations for international use and are accepted by IEC and ISO National bodies in that sense. While all reasonable efforts are made to ensure that the technical content of IEC and ISO documents is accurate, IEC and ISO cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC and ISO National bodies undertake to apply IEC and ISO documents transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC and ISO document and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC and ISO do not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC and ISO marks of conformity. IEC and ISO are not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this document.
- 7) No liability shall attach to IEC and ISO or their directors, employees, servants or agents including individual experts and members of its technical committees and IEC and ISO National bodies for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this ISO/IEC document or any other IEC and ISO documents.
 ISO/IEC 30161-1:2020
- 8) Attention is drawn to the Normative references sited in this document 3 Use of the referenced publications is indispensable for the correct application of this document 30161-1-2020
- Attention is drawn to the possibility that some of the elements of this ISO/IEC document may be the subject of patent rights. IEC and ISO shall not be held responsible for identifying any or all such patent rights.

International Standard ISO/IEC 30161 was prepared by subcommittee 41: Internet of Things and related technologies, of ISO/IEC joint technical committee 1: Information technology.

The text of this International Standard is based on the following documents:

FDIS	Report on voting
JTC1-SC41/178/FDIS	JTC1-SC41/187/RVD

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

INTRODUCTION

IoT implements various services in many fields, such as "Remote Management of Large Equipment in a Plant", "Warehouse Goods Monitoring", "IoT Endpoint (Sensors and Actuators) Monitoring Systems", etc. The IoT architecture can be categorized into vertical and horizontal approaches. For small deployments in limited areas, the vertical approach is possible. However, for large scale deployments, the horizontal approach is required, and then introducing the concept of a common platform is helpful for implementing various services. In the horizontal approach, information processing and networking are positioned as the platform. And also, the types of IoT services are increasing in different application fields. To make IoT services more creative and productive, data exchange between various IoT services needs to be supported and a common platform for data exchange is the simplest way. This document has been developed in accordance with a detailed study of a platform that supports various IoT use cases.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/IEC 30161-1:2020 https://standards.iteh.ai/catalog/standards/sist/de945703-f353-4205-8861-5a939fc9abed/iso-iec-30161-1-2020

INTERNET OF THINGS (IoT) – DATA EXCHANGE PLATFORM FOR IOT SERVICES – Part 1: General requirements and architecture

1 Scope

This document specifies requirements for an Internet of Things (IoT) data exchange platform for various services in the technology areas of:

- the middleware components of communication networks allowing the co-existence of IoT services with legacy services;
- the end-points performance across the communication networks among the IoT and legacy services;
- the IoT specific functions and functionalities allowing the efficient deployment of IoT services;
- the IoT service communication networks' framework and infrastructure; and
- the IoT service implementation guideline for the IoT data exchange platform.

2 Normative references STANDARD PREVIEW

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

https://standards.iteh.ai/catalog/standards/sist/de945703-f353-4205-8861-

5a939fc9abed/iso-iec-30161-1-2020 ISO/IEC 30141:2018, Internet of Things (IoT) – Reference architecture

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at http://www.iso.org/obp
- IEC Electropedia: available at http://www.electropedia.org/

3.1

IoT data exchange platform

IoT DEP

set of functional blocks that provide an abstraction of IoT data blocks and exchange of IoT data with other entities

Note 1 to entry: For example, in a huge number of sensors across various networks, IoT DEP reduces traffic volumes and exchanges IoT data with other entities. Functional blocks of IoT DEP are implemented at endpoints and nodal points in IoT networks. These functional blocks cooperate as a platform.

3.2

nodal point

point that investigates routing information specified in communication protocols and relays data blocks according to such information

4 Abbreviated terms

CAC	communication access control
CCN	content centric network
DNS	domain name service
ICN	information centric network
IoT	Internet of Things
IoT DEP	IoT data exchange platform
IP	internet protocol
MQTT	Message Queuing Telemetry Transport
OSI	open systems interconnection
QoS	quality of service
ТСР	transmission control protocol
UDP	user datagram protocol

5 Overview of IoT services

Considering IoT use cases across sectors, it can be assumed that data blocks from/to sensors and actuators, referred to as "IoT data", are transferred across networks. To reduce traffic volume and comply with various user requirements on QoS, it is reasonable that an IoT DEP should be deployed. The toT DEP is positioned in the application layer of the OSI reference model. However, IoT data is transferred over abstracted lower layers including the current Internet. An IoT DEP shall be implemented in accordance with the networking view of IoT reference architecture defined in ISO/IEC 30141:2018.

ISO/IEC 30161-1:2020

The IoT DEP should not impact communications other than 10T data and permit co-existence of communications of IoT data and other data is therefore, this document promotes an approach that isolates communications of IoT data from other communications. It excludes specifications of cloud computing and edge computing, which deal with distributed operations for every layer in the reference model.

Overviews and analyses of the IoT use cases have motivated this document and are summarized in Annex C. These use cases are collected in ISO/IEC TR 22417 [1]¹.

6 Network configurations for IoT services

6.1 Overview of network configurations for IoT

An overview of network configurations for IoT is shown in Figure 1. Networks provide connection among IoT users, IoT gateway, and IoT devices specified in ISO/IEC 30141:2018. Moreover, IoT devices – for example specified in ISO/IEC 30118-1 to ISO/IEC 30118-6 [2],[3],[4],[5],[6],[7] – are included.

Each network can have several nodal points. In ISO/IEC 30141:2018, sub-systems (Operations & Management sub-system, Application & Service sub-system, and Resource Access & Interchange sub-system) in entity-based reference models take on the role of nodal points. These sub-systems correspond to the Operations & Management Domain, Application & Service Domain, and Resource Access & Interchange Domain in a domain-based reference model.

¹ Numbers in square brackets refer to the Bibliography.

- 8 - ISO/IEC 30161-1:2020 © ISO/IEC 2020

Figure 1 – Overview of network configurations

Detailed network configurations based on Figure 1 are shown in Figure 2. As shown in Figure 2, configurations consist of five service types. Service type 1 provides local services for limited areas. Service types 2 to 5 provide wide area services. In some cases of wide area services, loT gateway can be deployed for connections between loT users and loT devices. However, in other cases, loT users can be connected to loT devices without loT gateway. In network types based on ISO/IEC 30141:2018, a proximity network provides connections for the limited areas. For the wide area services, the user network, service network, and access network are deployed. In these, the user network takes the role of network for loT specific applications and is operated by loT user. The service network and access network accommodate generic applications, including loT-specific applications and legacy applications (e.g. telephony, video distribution, and Internet access). The service network includes switching functions among locations. The access network provides multiplexing functions of traffic flow from every specific area.

Figure 2 – Service types of the network configurations

ISO/IEC 30161-1:2020 © ISO/IEC 2020 - 9 -

6.2 Network models for an IoT DEP

An IoT DEP transfers a huge number of data blocks from/to sensors and actuators effectively. It should be applied to any service including local area services and wide area services for IoT. It should be operated across any network, including proximity networks, access networks, service networks, and user networks specified in ISO/IEC 30141:2018, even if applications other than IoT are deployed in these networks.

Although network configurations are categorized into five types (Figure 2), these five types are aggregated into three types from an IoT DEP point (Figure 3). As shown in Figure 3, configuration type 1, types 2 and 3, and types 4 and 5 are redefined as configuration types X, Y, and Z, respectively.

Figure 3 – Redefined configuration types for an IoT DEP

7 Data exchange platform in IoT reference architecture

7.1 General

IoT DEP takes the role of the interworking of information in IoT systems. Cloud computing related technologies, including interfaces of connections to the cloud, are not specified in this document.

An IoT DEP is distributed to entities specified in ISO/IEC 30141:2018. Therefore, it works as a platform by combining distributed parts.

7.2 Position of an IoT DEP in IoT reference architecture

7.2.1 Functions of the IoT DEP

An IoT DEP transfers data to IoT applications effectively as a part of network functions. IoT DEP shall not include data processing and computation in cloud computing.

An IoT DEP shall provide the following functions.

- In order to ensure effective IoT application services, an IoT DEP shall operate independent of communication media and protocols. It shall connect among IoT users and IoT devices via IoT gateway or directly. For example, when a huge volume of data from sensors is transferred across wide area networks using Internet technologies, an IoT DEP provides the communication with small overheads such as small processing delay and/or a small traffic volume by reducing processing on complicated IP related protocols.
- An IoT DEP shall dynamically control the required functions for IoT applications. For example, it controls traffic flows for IoT applications and shall provide a requested QoS.

7.2.2 Positions of the IoT DEP

IoT DEP functions are implemented in IoT user, Resource Access & Interchange sub-system, IoT gateway, and IoT devices that are specified in the entity-based model of ISO/IEC 30141:2018. The relationship between the reference model specified in ISO/IEC 30141:2018 and an IoT DEP is shown in Figure 4. In ISO/IEC 30141:2018, two reference models – entity-based and domain-based – are specified. In Figure 4, locations of the IoT DEP functions are shown, explaining the relationship between both reference models in ISO/IEC 30141:2018.

7.3 Operation of an IoT DEP in an IoT system

Functions of IoT DEP are described in 7.2.1. In Cases C and D, IoT applications provided by an IoT DEP co-exist with legacy applications. Figure 5 shows a logical configuration; however, IoT gateway and Resource Access & Interchange sub-system accommodating IoT DEP functions can be shared with nodal points for legacy applications, from an implementation point of view.