

Edition 2.0 2021-04

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Rotating electrical machines - Test methods and apparatus for the measurement of the operational characteristics of brushes (Standards.iten.al)

Machines électriques tournantes – Méthodes d'essai et appareils pour le mesurage des caractéristiques opérationnelles des balais 9772-

30afe19ebbcd/iec-60773-2021

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2021 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland Tel.: +41 22 919 02 11 info@iec.ch www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number text technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC online collection - oc.iec.ch

Discover our powerful search engine and read freely all the publications previews. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published details all new publications released. Available online (and)77 once a month by email.

The world's leading online dictionary on electrotechnology, containing more than 22 000 terminological entries in English and French, with equivalent terms in 18 additional languages. Also known as the International Electrotechnical Vocabulary

IEC Customer Service Centre - webstore.iec.ch/csc9ebbcd/iec-60/73-2021 If you wish to give us your feedback on this publication or

need further assistance, please contact the Customer Service Centre: sales@iec.ch.

A propos de l'IEC

La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC

Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié.

Recherche de publications IEC -

webstore.iec.ch/advsearchform

La recherche avancée permet de trouver des publications IEC en utilisant différents critères (numéro de référence, texte, comité d'études, ...). Elle donne aussi des informations sur les projets et les publications remplacées ou retirées.

IEC Just Published - webstore.iec.ch/justpublished

Restez informé sur les nouvelles publications IEC. Just Published détaille les nouvelles publications parues. Disponible en ligne et une fois par mois par email.

Service Clients - webstore.iec.ch/csc

Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions contactez-nous: sales@iec.ch.

IEC online collection - oc.iec.ch

Découvrez notre puissant moteur de recherche et consultez gratuitement tous les aperçus des publications. Avec un abonnement, vous aurez toujours accès à un contenu à jour adapté à vos besoins.

Electropedia - www.electropedia.org

Le premier dictionnaire d'électrotechnologie en ligne au monde, avec plus de 22 000 articles terminologiques en anglais et en français, ainsi que les termes équivalents dans 16 langues additionnelles. Egalement appelé Vocabulaire Electrotechnique International (IEV) en ligne.

Edition 2.0 2021-04

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Rotating electrical machines - Test methods and apparatus for the measurement of the operational characteristics of brushes

Machines électriques tournantes <u>TeMéthodes</u> d'essai et appareils pour le mesurage des caractéristiques opérationnelles des balais 9772-30afe19ebbcd/iec-60773-2021

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 29.160.10

ISBN 978-2-8322-9656-1

Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

 Registered trademark of the International Electrotechnical Commission Marque déposée de la Commission Electrotechnique Internationale

CONTENTS

FC	DREWORD	·	6
1	Scope		8
2	Normati	ve references	8
3	Terms, o	definitions, symbols and abbreviated terms	8
	3.1 Te	rms and definitions	9
	3.2 Sy	mbols	15
	3.2.1	Symbols and units	15
	3.2.2	Subscripts	16
	3.3 Ab	breviated terms	17
4	Test rig	specification	18
	4.1 Co	mmon specification	18
	4.1.1	General	18
	4.1.2	Rings	18
	4.1.3	Brushes	19
	4.1.4	Brush holders	19
	4.1.5	Power supply	21
	4.1.6	Instrumentation	21
	4.2 Te	st rig specification for commutators	31
	4.2.1	General Ieh STANDARD PREVIEW	31
	4.2.2	Test rings	31
	4.2.3	Brushes arrangement	34
	4.2.4	Special brush for voltage drop measurement	35
	4.3 Te	st rig specificationsformslip ringstandards/sist/aff434hc-dcfa-4e22-9772-	36
	4.3.1	General 30afe19ebbcd/iec-60773-2021	36
	4.3.2	Ring	36
	4.3.3	Brushes	38
	4.3.4	Configuration for DC and AC operation	38
5	Test sch	edule and operating conditions	40
	5.1 Ge	eneral	40
	5.2 En	vironmental conditions	41
	5.2.1	Laboratory environment	41
	5.2.2	Ambient air temperature and ring surface temperature	41
	5.2.3	Ambient humidity	41
	5.3 Or	perating conditions	41
	5.4 Te	st preparation and inspection	42
	5.4.1	General	42
	5.4.2	Test rig	42
	5.4.3	Brush-holders	42
	5.4.4	Test brushes	42
	5.4.5	Ring roughness	42
	5.4.6	Brush bedding	43
	5.4.7	Brushes measurement	43
	5.5 Te	st sequence	43
	5.5.1	Test starting	43
	5.5.2	Test duration	43
	5.6 Me	easurements and observations	43
	5.6.1	General	43

	5.6.2	Interval between measurements	44
	5.6.3	Before starting a test sequence	44
	5.6.4	Measurements during a test sequence	45
	5.6.5	Measurements after a test sequence	45
6	Dete	rmination of friction coefficient	45
	6.1	General	45
	6.2	Test conditions	46
	6.3	Measurements	46
	6.3.1	General	46
	6.3.2	Test rig arrangement of Method a)	
	6.3.3	Test rig arrangement of Method b)	
	6.4	Calculation of friction coefficient	
	6.4.1	Test rig arrangement of Method a).	
	6.4.2	Test rig arrangement of Method b)	47
	6.5	Report	47
7	Dete	rmination of voltage drop	
-	7 1	General	18
	7.1	Test conditions	0+
	73	Measurements	40
	7.5	Coporal	49
	7.3.1	Brush the Waltage day VDARD PREVIEW	49
	7.3.2		49
	7.3.3	Brush contact voltage drop UC.CIS.IT.en.a.	49
	7.4	Calculation	50
	7.4.1	Brush total voltage drop $U_{B} = \frac{60773}{2021}$	50
		numet/relandarde ilen al/calaido/elandarde/siel/au/454hc_dcia_4e77_9777_	
	7.4.2	Brush contact voltage drop b ct/iev-60773-2021	50
	7.4.2 7.5	Brush contact voltage drop Ucdrice-60773-2021	50 51
8	7.4.2 7.5 Dete	Report	50 51 52
8	7.4.2 7.5 Dete 8.1	Report	50 51 52 52
8	7.4.2 7.5 Dete 8.1 8.2	Report. General. Test conditions	50 51 52 52 52
8	7.4.2 7.5 Dete 8.1 8.2 8.3	Report General Test conditions Measurements	50 51 52 52 52 52
8	7.4.2 7.5 Dete 8.1 8.2 8.3 8.4	Report. General. Test conditions Measurements Calculation of brush wear.	50 51 52 52 52 52 53
8	7.4.2 7.5 Dete 8.1 8.2 8.3 8.4 8.5	Brush contact voltage drop Uctrice-60773-2021 Report	50 51 52 52 52 52 53 54
8	7.4.2 7.5 Dete 8.1 8.2 8.3 8.4 8.5 Dete on a	Brush contact voltage drop Uctrice-60773-2021 Report	50 51 52 52 52 53 54 54
8	7.4.2 7.5 Dete 8.1 8.2 8.3 8.4 8.5 Dete on a	Brush contact voltage drop Uctrice-60773-2021 Report	50 51 52 52 52 52 53 54
8	7.4.2 7.5 Dete 8.1 8.2 8.3 8.4 8.5 Dete on a 9.1 0 2	Brush contact voltage drop Uctrice-60773-2021 Report	50 51 52 52 52 53 54 54 54
8	7.4.2 7.5 Dete 8.1 8.2 8.3 8.4 8.5 Dete on a 9.1 9.2 0.2	Report	50 51 52 52 52 53 54 54 54 55
8	7.4.2 7.5 Dete 8.1 8.2 8.3 8.4 8.5 Dete on a 9.1 9.2 9.3	Brush contact voltage drop Wetree-60773-2021 Report	50 51 52 52 52 53 54 54 54 55 58
9	7.4.2 7.5 Dete 8.1 8.2 8.3 8.4 8.5 Dete on a 9.1 9.2 9.3 9.3.1	Brush contact voltage drop Wetree-60773-2021 Report	50 51 52 52 52 53 53 54 54 54 54 58 58
8	7.4.2 7.5 Dete 8.1 8.2 8.3 8.4 8.5 Dete on a 9.1 9.2 9.3 9.3.1 9.3.2	Brush contact voltage drop Uc Hec-60773-2021 Report	50 51 52 52 52 53 54 54 54 55 58 58 58
8	7.4.2 7.5 Dete 8.1 8.2 8.3 8.4 8.5 Dete on a 9.1 9.2 9.3 9.3.1 9.3.2 9.4 9.5	Brush contact voltage drop (/ctiec-60773-2021) Report	50 51 52 52 52 53 54 54 54 58 58 58 58
8	7.4.2 7.5 Dete 8.1 8.2 8.3 8.4 8.5 Dete on a 9.1 9.2 9.3 9.3.1 9.3.2 9.4 9.5	Brush contact voltage drop (/c.t/cc-60773-2021) Report	50 51 52 52 52 53 53 54 54 54 58 58 58 58 58 58 58
9	7.4.2 7.5 Dete 8.1 8.2 8.3 8.4 8.5 Dete on a 9.1 9.2 9.3 9.3.1 9.3.2 9.4 9.5 9.5.1	Brush contact voltage drop de tree-60773-2021 Report	50 51 52 52 52 52 53 54 54 54 55 58 58 58 58 58 58 59 60
8	7.4.2 7.5 Dete 8.1 8.2 8.3 8.4 8.5 Dete on a 9.1 9.2 9.3 9.3.1 9.3.2 9.4 9.5 9.5.1 9.5.2	Brush contact voltage dop Voltev-60773-2021 Report	50 51 52 52 52 52 53 53 54 54 54 55 58 58 58 58 58 59 60 61
8	7.4.2 7.5 Dete 8.1 8.2 8.3 8.4 8.5 Dete on a 9.1 9.2 9.3 9.3.1 9.3.2 9.4 9.5 9.5.1 9.5.2 9.5.3	Brush contact voltage drop Voltev-60773-2021 Report	50 51 52 52 52 53 53 54 54 54 55 58 58 58 58 58 59 60 61 62
8	7.4.2 7.5 Dete 8.1 8.2 8.3 8.4 8.5 Dete on a 9.1 9.2 9.3 9.3.1 9.3.2 9.4 9.5 9.5.1 9.5.2 9.5.3 9.5.4	Brush contact voltage, drop, t/catience/stortine/storent-test- mination of brush wear	50 51 52 52 52 52 53 53 54 54 54 54 55 58 58 58 58 58 59 60 61 62 64
8 9 Ar	7.4.2 7.5 Dete 8.1 8.2 8.3 8.4 8.5 Dete on a 9.1 9.2 9.3 9.3.1 9.3.2 9.3.1 9.3.2 9.4 9.5 9.5.1 9.5.2 9.5.3 9.5.4	Brush contact voltage drop Ucite 6073-2021 Report	50 51 52 52 52 53 54 54 54 54 58 58 58 58 58 58 59 60 61 62 64 67

A.2	Adjustment of strain sensor for calculation of friction coefficient by using method b) of 4 1 6 1 3	68
A.2.1	General	. 68
A.2.2	Correlation between output voltage and load	.68
A.2.3	Correlation between friction coefficient and load	.68
Annex B (informative) Black-band zone deviation cases	.71
B.1	Black-band zone in case of limited contact area	.71
B.2	Influence of brush mechanical contact instability of brush chattering on the black-band zone	.72
B.3	Black-band zone hysteresis between increased I_a and decreased I_a	.73
Annex C (informative) Test report example	.75
Bibliograp	hy	.77
Figure 1 -	Profile and determination of height of profile elements	9
Figure 2 -	- Forces acting on a brush	. 12
Figure 3 -	Voltage drops in a brush when in operation	.12
Figure 4 -	- Brush holder configuration	. 20
Figure 5 -	Measurement of the mechanical torque by Method a)	. 22
Figure 6 -	Brush test machine for Method b)	.23
Figure 7 -	Test rig arrangement with a load cell RD PREVIEW	.24
Figure 8 -	Brush contact probe application point for teh.ai)	.27
Figure 9 -	Thermocouples insertion position	. 28
Figure 10	- Evaluation of contact temperature θ_{C} by interpolation	.29
Figure 11	- Illustration of bar grooves dimensions and preparation	. 32
Figure 12	– Brush covering	. 34
Figure 13	 Brushes configuration 	. 35
Figure 14	 Control brush arrangement 	.36
Figure 15	- Characteristics of grooves	. 37
Figure 16	- Test rig arrangement for DC operation with 2 brushes per polarity	.39
Figure 17	- Test rig arrangement for AC operation with 2 brushes	.40
Figure 18	– Example of friction coefficient μ graph as a function of peripheral speed $v_{\sf p}$.48
Figure 19	– Example of brush total voltage drop U_{B} graph as a function of	
current de	ensity J _B	. 52
Figure 20	– Example of brush wear rate WR_i of brushes during the test for a test rig	
with 4 bru	shes	. 53
Figure 21 Ioad 56	 Black-band test circuit configuration using DC generator and resistance 	
Figure 22	 Black-band test circuit configuration for Brondell's loading-back method 	.57
Figure 23 rotation	 Determination of black-band zone for a specified constant speed of 	.60
Figure 24	- Influence of commutator film thickness on the black-band zone	.62
Figure 25 contact re	 Comparison of black-bands for a high contact resistance brush and a low sistance brush in case of a motor 	.63
Figure 26 contact re	 Comparison of black-bands for a high contact resistance brush and a low sistance brush in case of a generator 	.64

IEC 60773:2021 © IEC 2021

Figure 27 – Black-band figure deviation of before and after the critical operation of repetitive peak load application of 225 %, for a "strong" grade	.65
Figure 28 – Black-band figure deviation of before and after the critical operation of repetitive peak load application of 225 %, for a "weak" grade	.66
Figure A.1 – Correlation of load cell output voltage U_{IC} with mass <i>m</i>	.68
Figure A.2 – Example of correlation between load and friction coefficient μ	.69
Figure B.1 – Limited contact area and reduction of tangential dimension at contact	.71
Figure B.2 – Black-band zone in case of a limited contact area	.72
Figure B.3 – Influence of brush mechanical contact instability of brush chattering on the black-band zone	.73
Figure B.4 – Black-band zone hysteresis between increasing I_{arm} and decreasing I_{arm}	.74
Table 1 – Dimensions of test brushes	10

Table 1 – Dimensions of test brushes	19
Table 2 – Test conditions	42

iTeh STANDARD PREVIEW (standards.iteh.ai)

IEC 60773:2021 https://standards.iteh.ai/catalog/standards/sist/aff434bc-dcfa-4e22-9772-30afe19ebbcd/iec-60773-2021

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ROTATING ELECTRICAL MACHINES – TEST METHODS AND APPARATUS FOR THE MEASUREMENT OF THE OPERATIONAL CHARACTERISTICS OF BRUSHES

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any enduser.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies: ds/sist/all434bc-dcta-4e22-9772-
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International standard IEC 60773 has been prepared by IEC technical committee 2: Rotating machinery.

This second edition cancels and replaces the first edition published in 1983. It constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- The clause structure has been modified on the view point of a laboratory testing procedure. The new sequence is as follows: test rig specification (Clause 4), general testing procedure (Clause 5), and specific procedure for each operational characteristic (Clauses 6 to 8).
- A new Clause 9 has been added to introduce the black-band test for the characterisation of the brush grades for DC machines.

The text of this International Standard is based on the following documents:

FDIS	Report on voting
2/2045/FDIS	2/2050/RVD

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

iTeh STANDARD PREVIEW (standards.iteh.ai)

IEC 60773:2021 https://standards.iteh.ai/catalog/standards/sist/aff434bc-dcfa-4e22-9772-30afe19ebbcd/iec-60773-2021

ROTATING ELECTRICAL MACHINES – TEST METHODS AND APPARATUS FOR THE MEASUREMENT OF THE OPERATIONAL CHARACTERISTICS OF BRUSHES

1 Scope

This document applies to test methods for the measurement of the operational characteristics of brushes designed to operate on commutating and slip ring machines under specified test conditions.

By extension some tests may be relevant for other kinds of sliding electrical contacts for electrical appliances.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

iTeh STANDARD PREVIEW IEC 60034-19:2014, Rotating electrical machines – Part 19: Specific test methods for d.c. machines on conventional and rectifier fed supplies ten.al

IEC 60136, Dimensions of brushes and brushes and brushes for electrical machinery https://standards.iteh.ai/catalog/standards/sist/aff434bc-dcfa-4e22-9772-

IEC 60276:2018, Carbon brushes, brush holders, commutators and slip-rings – Definitions and nomenclature

IEC 60356, Dimensions for commutators and slip-rings

IEC 60584-1:2013, Thermocouples – Part 1: EMF specifications and tolerances

IEC 60751:2008, Industrial platinum resistance thermometers and platinum temperature sensors

IEC TR 61015, Brush-holders for electrical machines. Guide to the measurement of the static thrust applied to brushes

ISO 1190-1:1982, Copper and copper alloys – code of designation – Part 1: Designation of materials

ISO 3274:1996, Geometrical Product Specifications (GPS) – Surface texture: Profile method – Nominal characteristics of contact (stylus) instruments

ISO 15510:2014, Stainless steels – Chemical composition

3 Terms, definitions, symbols and abbreviated terms

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

3.1 Terms and definitions

3.1.1 run-out

runout

inaccuracy of the rotating system, measured on the surface of the ring while turning

Note 1 to entry: This includes out-of-round (that is, lacking sufficient roundness); eccentricity (that is, lacking sufficient concentricity); or axial bending (regardless of whether the surfaces are perfectly round and concentric at every cross-sectional point).

3.1.2

roughness

Ra

arithmetic mean of the absolute ordinate value Z(x) of a profile within a sampling length l

Example: Figure 1 shows an example of profile dards.iteh.ai)

Key

Zt_i height of profile element *i*

l sampling length

ML mean line

C1 and C2 upper and lower intersection lines (respectively)

Figure 1 – Profile and determination of height of profile elements

[SOURCE: ISO 4287:1997, Figure 9]

3.1.3

peak count

RPc

number of profile elements per centimeter of sampling length which exceed the upper intersection line C1 and fall short of the lower intersection line C2

Note 1 to entry: Both intersection lines are parallel to the diagram mean line (see Figure 1).

[SOURCE: ISO 4287/A1:2009, 4.3.2]

3.1.4

abrasive stone material used to grind a surface

Note 1 to entry: The quality of the material and the method of appliance depend on its use. Therefore, for the purpose of this document, definitions 3.1.5, 3.1.7 and 3.1.8 are used.

3.1.5

grinding stone abrasive stone used to grind the test ring

Note 1 to entry: It is generally made of hard abrasive grains.

3.1.6

brush fitting

operation at the end of which the brush contact surface is matching the ring profile

3.1.7

(standards.iteh.ai)

fitting stone abrasive stone used for fitting the brush to the commutator/ring

> https://standards.iteh.ai/catalog/standards/sist/aff434bc-dcfa-4e22-9772-30afe19ebbcd/iec-60773-2021

3.1.8 roughness stone

abrasive stone used to obtain the proper range of roughness to the test ring, generally made of soft abrasive grain

3.1.9 brush contact area

S

area of the brush in contact with the ring surface

Note 1 to entry: When radial brush is used the brush contact surface area S_r is the cross-section of the brush:

$$S = t \times a \tag{1}$$

where t and a are respectively the tangential and axial dimensions of the brush.

When inclined brush is used the bottom angle is part of the formula giving the brush contact surface area S_{α} :

$$S_{\alpha} = \frac{t \times a}{\cos a} \tag{2}$$

where α is the contact angle (or bottom angle).

3.1.10 brush specific pressure

force per contact area of the brush, given by formula (3):

$$p = \frac{F_{\rm p}}{S} \tag{3}$$

where F_{p} is the force applied by the pressure system;

and *S* is the brush contact surface area

Note 1 to entry: When F_p is expressed in grams force (gf) and brush contact surface in cm² the calculated specific pressure is in gf/cm². To convert into SI units: the result in gf/cm² multiplied by 98,07 gives p in N/m² (98,07 is the gravitational acceleration in m/s² multiplied by 10).

3.1.11 current ripple factor

 q_{i}

ratio of the difference between the maximum value I_{max} and the minimum value I_{min} of an undulating current to two times the average value \overline{I} (mean value integrated over one period):

$$q_{\rm i} = \frac{I_{max} - I_{min}}{2 \times \overline{\rm I}}$$

Note 1 to entry: For small values of current ripple, the ripple factor may be approximated by the following expression:

$$q_{\rm i} = \frac{I_{max} - I_{min}}{I_{max} + I_{min}}$$

Note 2 to entry: The above expression may be used as an approximation if the resulting calculated value of q_i is equal to or less than 0,4.

[SOURCE: IEC 60034-1:2017, 3(29)andards.iteh.ai)

3.1.12

<u>IEC 60773:2021</u>

stable state https://standards.iteh.ai/catalog/standards/sist/aff434bc-dcfa-4e22-9772state of a physical system in which the relevant characteristics are considered to be sensibly constant with time

[SOURCE: IEC 60050-103:2009, 103-05-01]

3.1.13 sensibly constant

a measurement result is considered as sensibly constant when deviation from mean value of a minimum of 3 consecutive measurements is less than 2,5 % (except otherwise specified)

Note 1 to entry: Stability state may be determined from the time-measurement rise plot when the straight lines between points at the beginning and end of two successive intervals of half hour each have a deviation of less than the criteria of 2,5 %.

3.1.14 friction coefficient

μ

ratio of tangential force acting at the interface F_{t} to the radial force acting at the interface F_{r} :

$$\mu = \frac{F_{\rm t}}{F_{\rm r}} \tag{4}$$

Note 1 to entry: Figure 2 illustrates the forces acting on the brush when a radial brush-holder is applied. The numerical value of radial force F_r is equal to the numerica value of the normal reaction force F_N (of the brush contact surface on the ring) and to the numerical value of the pressure system force F_p on the brush top.

Key

- 1 Brush
- 2 Brush-holder
- 3 Test ring
- ω -Angular velocity (giving the rotation direction)

Figure 2 – Forces acting on a brush

3.1.15 brush voltage drop $U_{\rm B}$ total voltage drop between the brush terminal and the slip ring or commutator

Note 1 to entry: $U_{\rm B}$ is a complex parameter which is made up from the sum of the voltage drops $U_{\rm s}$, $U_{\rm f}$, $U_{\rm i}$, and $U_{\rm c}$ as illustrated in Figure 2 (which concerns a brush with a tamped flexible).

3.1.16 shunt voltage drop $U_{\rm s}$

voltage drop in the shunt (flexible) and in the shunt connection to the brush terminal

3.1.17 connection drop $U_{\rm f}$

voltage drop between the shunt (flexible) and the brush grade

Note 1 to entry: The connection drop $U_{\rm f}$ measurement is described in IEC 60136.

3.1.18 brush internal drop

 U_{i} internal voltage drop of the brush (due to the brush grade resistance)

3.1.19 brush contact drop

 $U_{\rm c}$ voltage contact drop between the brush grade and the ring

Note 1 to entry: The brush contact drop U_c is an operating characteristic of a brush. See Clause 7.

3.1.20 slot pitch

 τ_{Q}

distance between two consecutive slots of the ring, defined by the periphery of the ring $\pi \times D$ divided by the number of slots STANDARD PREVIEW

$$(standards Diteh.ai)$$
 (5)

 $\frac{\text{IEC } 60773:2021}{\text{where } D \text{ is the diameter/of the ding}.ai/catalog/standards/sist/aff434bc-dcfa-4e22-9772-30afe19ebbcd/iec-60773-2021}$

[SOURCE: IEC 60027-4:2006,612]

3.1.21 covering ratio coverage ratio

 τ_{B}

number of segments spanned by the brush along *t* dimension, calculated from formula (6)

$$\tau_{\rm B} = \frac{t}{\tau_{\rm Q}} \tag{6}$$

3.1.22 peripheral speed ^vp

speed of movement of a point on the surface of a body rotating about its axis expressed as a distance per unit of time

It is calculated from formula (7)

$$v_{\rm p} = \frac{n \times \pi \times D}{60} \tag{7}$$

where

D is the ring diameter, in metres, and n is the speed of rotation, in number of revolutions per minute (r/min).

[SOURCE: IEC 60050-811:2017, 811-13-29, modified - formula is added]