This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Standard Guide for Sampling Ground-Water Monitoring Wells¹

This standard is issued under the fixed designation D4448; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This guide covers sampling equipment and procedures and "in the field" preservation, and it does not include well location, depth, well development, design and construction, screening, or analytical procedures that also have a significant bearing on sampling results. This guide is intended to assist a knowledgeable professional in the selection of equipment for obtaining representative samples from ground-water monitoring wells that are compatible with the formations being sampled, the site hydrogeology, and the end use of the data.

1.2 This guide is only intended to provide a review of many of the most commonly used methods for collecting groundwater quality samples from monitoring wells and is not intended to serve as a ground-water monitoring plan for any specific application. Because of the large and ever increasing number of options available, no single guide can be viewed as comprehensive. The practitioner must make every effort to ensure that the methods used, whether or not they are addressed in this guide, are adequate to satisfy the monitoring objectives at each site.

1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses are provided for information only.

1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:²

- D4750 Test Method for Determining Subsurface Liquid Levels in a Borehole or Monitoring Well (Observation Well) (Withdrawn 2010)³
- D5088 Practice for Decontamination of Field Equipment Used at Waste Sites
- D5792 Practice for Generation of Environmental Data Related to Waste Management Activities: Development of Data Quality Objectives
- D5903 Guide for Planning and Preparing for a Groundwater Sampling Event
- D6089 Guide for Documenting a Groundwater Sampling
- D6452 Guide for Purging Methods for Wells Used for Ground Water Quality Investigations
- D6517 Guide for Field Preservation of Ground Water Samples
- 2.2 EPA Standards:⁴ EPA Method 9020A EPA Method 9022

3. Terminology a fd24911 cf89/astm-d4448-012019

3.1 Definitions:

3.1.1 *low-flow sampling*—a ground-water sampling technique where the purge and sampling rates do not result in significant changes in formation seepage velocity.

3.1.2 *minimal purge sampling*—the collection of ground water that is representative of the formation by purging only the volume of water contained by the sampling equipment (that is, tubing, pump bladder).

3.1.2.1 *Discussion*—This sampling method should be considered in situations where very low yield is a consideration

¹This guide is under the jurisdiction of ASTM Committee D34 on Waste Management and is the direct responsibility of Subcommittee D34.01.02 on Sampling Techniques.

Current edition approved Feb. 1, 2019. Published February 2019. Originally approved in 1985. Last previous edition approved in 2013 as D4448-01 (2013). DOI: 10.1520/D4448-01R19.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

³ The last approved version of this historical standard is referenced on www.astm.org.

⁴ Available from United States Environmental Protection Agency (EPA), William Jefferson Clinton Bldg., 1200 Pennsylvania Ave., NW, Washington, DC 20460, http://www.epa.gov.

and results from this sampling method should be scrutinized to confirm that they meet data quality objectives (DQOs) and the work plan objectives.

3.1.3 *passive sampling*—the collection of ground-water quality data so as to induce no hydraulic stress on the aquifer.

3.1.4 *water quality indicator parameters*—refer to field monitoring parameters that include but are not limited to pH, specific conductance, dissolved oxygen, oxidation-reduction potential, temperature, and turbidity that are used to monitor the completeness of purging.

4. Summary of Guide

4.1 The equipment and procedures used for sampling a monitoring well depend on many factors. These include, but are not limited to: the design and construction of the well, rate of ground-water flow, and the chemical species of interest. Sampling procedures may be different if analyses for trace organics, volatiles, oxidizable species, or trace metals are needed. This guide considers all of these factors by discussing equipment and procedure options at each stage of the sampling sequence. For ease of organization, the sampling process can be divided into three steps: well purging, sample withdrawal, and field preparation of samples. Certain sampling protocols eliminate the first step.

4.2 The sampling must be well planned and all sample containers must be prepared prior to going to the field. These procedures should be incorporated in the approved work plan that should accompany the sampling crew so that they may refer to it for guidance on sampling procedures and analytes to be sampled (see Guide D5903).

4.3 Monitoring wells must be either purged to remove stagnant water in the well casing or steps must be taken to ensure that only water meeting the DQOs and the work plan objectives is withdrawn during sampling (see Practice D5792). When well purging is performed, it is accomplished by either removing a predetermined number of well volumes or by the removal of ground water until stable water quality parameters have been obtained. Ideally, this purging is performed with minimal well drawdown and minimal mixing of the formation water with the stagnant water above the screened interval in the casing. Passive sampling and the minimal purge methods do not attempt to purge the water present in the monitoring well prior to sampling (1).⁵ The minimal purge method attempts to purge only the sampling equipment. Each of these methods is discussed in greater detail in Section 6.

4.4 The types of chemical species that are to be sampled, as well as the reporting limits, are prime factors for selecting sampling devices (2, 3). The sampling device and all materials and devices the water contacts must be constructed of materials that will not introduce contaminants or alter the analytes of concern in any way. Material compatibility is further discussed in Section 8.

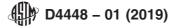
4.5 The method of sample collection can vary with the parameters of interest. The ideal sampling scheme employs a

completely inert material, does not subject the sample to pressure change, does not expose the sample to the atmosphere, or any other gaseous atmosphere before conveying it to the sample container or flow cell for on-site analysis. Since these ideals are not always obtainable, compromises must be made by the knowledgeable individual designing the sampling program. These concerns should be documented in the data quality objectives (DQOs) of the sampling plan (see Practice D5792) (4).

4.6 The degree and type of effort and care that goes into a sampling program is always dependent on the chemicals of concern and their reporting levels as documented in the project's DQOs. As the reporting level of the chemical species of analytical interest decreases, the precautions necessary for sampling generally increase. Therefore, the sampling objective must clearly be defined ahead of time in the DQOs. The specific precautions to be taken in preparing to sample for trace organics are different from those to be taken in sampling for trace metals. A draft U.S. EPA guidance document (**5**) concerning monitoring well sampling, including considerations for trace organics, is available to provide additional guidance.

4.7 Care must be taken not to contaminate samples or monitoring wells. All samples, sampling devices, and containers must be protected from possible sources of contamination when not in use. Water level measurements should be made according to Test Method D4750 before placing, purging, or sampling equipment in the well. Redox potential, turbidity, pH, specific conductance, DO (dissolved oxygen), and temperature measurements should all be performed on the sample in the field, if possible, since these parameters change too rapidly to be conducted by a fixed laboratory under most circumstances. Field meter(s) or sondes equipped with flow-through cells are available that are capable of continuously monitoring these parameters during purging if they are being used as water quality indicator parameters. These devices prevent the mixing of oxygen with the sample and provide a means of determining when the parameters have stabilized. Certain measurements that are used as indicators of biological activity, such as ferrous iron, nitrite, and sulfite, may also be conducted in the field since they rapidly oxidize. All temperature measurements must be done prior to any significant atmospheric exposure.

5. Significance and Use


5.1 The quality of ground water has become an issue of national concern. Ground-water monitoring wells are one of the more important tools for evaluating the quality of ground water, delineating contamination plumes, and establishing the integrity of hazardous material management facilities.

5.2 The goal in sampling ground-water monitoring wells is to obtain samples that meet the DQOs. This guide discusses the advantages and disadvantages of various well sampling methods, equipment, and sample preservation techniques. It reviews the variables that need to be considered in developing a valid sampling plan.

6. Well Purging

6.1 Water that stands within a monitoring well for a long period of time may become unrepresentative of formation

⁵ The boldface numbers in parentheses refer to a list of references at the end of this guide.

water because chemical or biochemical change may alter water quality or because the formation water quality may change over time (see Guide D6452). Even if it is unchanged from the time it entered the well, the stagnant water may not be representative of formation water at the time of sampling. There are two approaches to purging that reflect two differing viewpoints: to purge a large volume of ground water and to purge a minimum of, or no ground water before collecting a sample. The approach most often applied is to purge a sufficient volume of standing water from the casing, along with sufficient formation water to ensure that the water being withdrawn at the time of sampling is representative of the formation water. Typically, three to five well volumes are used. An alternative method that is gaining acceptance is to minimize purging and to conduct purging at a low flow rate or to eliminate purging entirely.

6.2 In any purging approach, a withdrawal rate that minimizes drawdown while satisfying time constraints should be used. Excessive drawdown distorts the natural flow patterns around the well. Two potential negative effects are the introduction of ground water that is not representative of water quality immediately around the monitoring well and artificially high velocities entering the well resulting in elevated turbidity and analytical data that reflects the absorption of contaminants to physical particles rather than soluble concentrations in ground water. It may also result in cascading water from the top of the screen that can result in changes in dissolved gases, redox state, and ultimately affect the concentration of the analytes of interest through the oxidation of dissolved metals and possible loss of volatile organic compounds (VOCs). There may also be a lingering effect on the dissolved gas levels and redox state from air being introduced and trapped in the sandpack. In no instance shall a well be purged dry. If available, the field notes or purge logs generated during previous sampling or development of the well, as well as construction logs, should be reviewed to assist in the selection of the most appropriate sampling method.

6.3 The most often applied purging method has an objective to remove a predetermined volume of stagnant water from the casing prior to sampling. The volume of stagnant water can either be defined as the volume of water contained within the casing and screen, or to include the well screen and any gravel pack if natural flow through these is deemed insufficient to keep them flushed out. Research with a tracer in a full-scale model 2-in. polyvinyl chloride (PVC) well (6) indicates that pumping five to ten times the volume of the well via an inlet near the free water surface is sufficient to remove all the stagnant water in the casing. This approach (with three to five casing volumes purged) was suggested by the U.S. EPA (7).

6.4 In deep or large-diameter wells having a volume of water so large as to make removal of all the water impractical, it may be feasible to lower a pump or pump inlet to some point well below the water surface, purge only the volume below that point, then withdraw the sample from a deeper level. Research indicates this approach should avoid most contamination associated with stagnant water (6, 8). Sealing the casing above the purge point with a packer may make this approach more dependable by preventing migration of stagnant water from

above. But the packer must be above the top of the screened zone, or stagnant water from above the packer may flow into the purged zone through the well's gravel/sand pack.

6.5 An alternate method is based on research by Barcelona, Wehrmann, and Varlien (1) and Puls and Powell (2). Their research suggests that purging at rates less than 1 L/min (approximately 0.25 gal/min) provides more reproducible VOCs and metals analytical results than purging at high rates. This method is based on the premise that at very low pumping rates, there is little mixing of the water column and laminar ground-water flow through the screen provides a more consistent sample. This sampling method also produces less turbid samples that may eliminate the need for filtration when collecting metals. This method is commonly referred to as low-flow sampling.

6.6 The low-flow sampling approach is most applicable to wells capable of sustaining a yield approximately equal to the pumping rate. A monitoring well with a very low yield may not be applicable to this technique, since it may be difficult to reduce the pumping rate sufficiently to prevent mixing of the water column in the well casing in such a well. The water level in the well being sampled should be continuously monitored using an electronic water-level indicator during low-flow sampling. Such a water-level indicator could be set below the water surface after sufficient water has been withdrawn to fill the pump, tubing, and flow cell. The water-level indicator would then produce a continuous signal indicating submersion. When the well is purged, if the water level falls below the water-level indicator probe, the signal indicates that the water level has fallen below the maximum allowable drawdown and the pumping rate should be decreased. Pumping is started at approximately 100 mL/min discharge rate and gradually adjusted to match the well's recharge rate. The selection of the type of pump is dependent on site-specific conditions and DQOs. The bladder pump design is most commonly used in this sampling method; however, the depth limitation of this pump may necessitate the use of a gas-driven piston pump in some instances.

6.7 A variation on the above purging approaches is to monitor one or more indicator parameters until stabilization of the selected parameter(s) has been achieved. Stabilization is considered achieved when measurements are within a predefined range. This range has been suggested to be approximately 10 % over two successive measurements made 3 min apart by the U.S. EPA (4). More recent documents (9) have suggested ranges ± 0.2 °C for temperature, ± 0.1 standard units for pH, ± 3 % for specific conductance, ± 10 % for DO, and ± 10 mV for redox potential. A disadvantage of the stabilization approach is that there is no assurance in all situations that the stabilized parameters represent formation water. These criteria should therefore be set on a site-by-site basis since if set too stringent, large volumes of contaminated purge water may be generated without ensuring that the samples are any more representative. In a low yielding formation, this could result in the well being emptied before the parameters stabilize. Also, if significant drawdown has occurred, water from some distance away may be pulled into the screen causing a steady parameter reading but not a representative reading. If these

criteria are properly selected, the volume of investigative derived waste water may be reduced.

6.8 The indicator parameters that may be monitored include pH, temperature, specific conductance, turbidity, redox potential, and DO. A combination of a pump and field meter(s) or sondes equipped with a flow-through cell is ideal for this purpose since it allows the monitoring of one or more of these parameters on a continuous basis without exposure to the atmosphere. A typical flow-through cell application is shown in Fig. 1. The pump used in this technique may be any pump capable of producing a steady flow, such as a peristaltic or bladder pump. If a submersible pump is used, the hydraulic pressure developed in the flow-through cell may be sufficient to force the probes out of their position. This problem may be eliminated by installing a tee connector in the discharge line to allow only a portion of the flow to enter the flow-through cell. Another concern with the low-flow sampling method is sorption onto the tubing. Studies have indicated that at flow rates of 0.1 L/min (0.026 gal/min), low-density polyethylene (LDPE) and plasticized polypropylene tubings are prone to sorption and TFE-fluorocarbon should be used. This is especially a concern if tubing lengths of 15 m (50 ft) or longer are used (10).

6.9 Gibb and Schuller (11) have described a time-drawdown approach using knowledge of the well hydraulics to predict the percentage of stagnant water entering a pump inlet near the top of the screen at any time after flushing begins. Samples are collected when the percentage is acceptably low. As before, the advantage is that well volume has no direct effect on the duration of pumping. A current knowledge of the well's hydraulic characteristics is necessary to employ this approach. Downward migration of stagnant water due to effects other than drawdown (for example, density differences) is not accounted for in this approach.

6.10 An alternative to purging a well before sampling is to collect a water sample within the screened zone without purging. These techniques are based on studies that under certain conditions, natural ground-water flow is laminar and horizontal with little or no mixing within the well screen (12, 13). To properly use these sampling techniques, a water sample

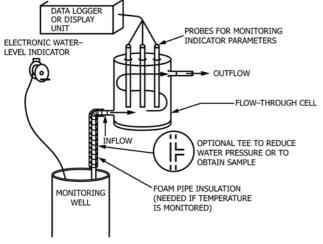


FIG. 1 Flow-Through Cell

must be collected within the screened interval with little or no mixing of the water column within the casing. Examples of these techniques include minimal purge sampling which uses a dedicated sampling pump capable of pumping rates of less than 0.1 L/min, discrete depth sampling using a bailer that allows ground water entry at a controlled depth (for example, differential pressure bailer (14)), or diffusion sampling. These sampling techniques are discussed in 8.1.10.

7. Materials and Manufacture

7.1 The choice of materials used in the construction of sampling devices should be based upon knowledge of what compounds may be present in the sampling environment and how the sample materials may interact via leaching, adsorption, or catalysis. A second concern is that corrosion or degradation may compromise the structural integrity of the sampling device. In some situations, PVC or other plastic may be sufficient. In others, an all TFE-fluorocarbon apparatus may be necessary. The potential presence of nonaqueous phase liquid (NAPL) should also be a consideration since its presence would expose the sampling equipment to high concentrations of potential solvents. No one material is ideal in that each material will, to some degree, absorb or leach chemicals or may degrade on exposure to a chemical.

7.2 The advantages and disadvantages of these materials for sampling equipment are summarized in Table 1.

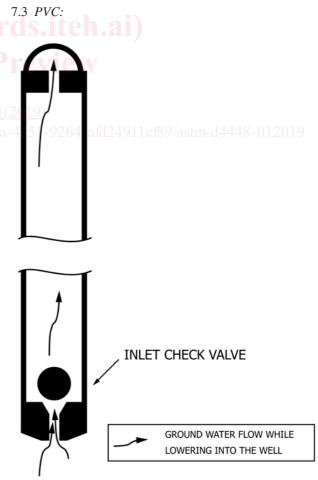
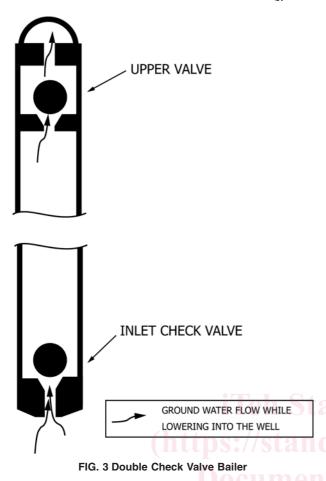



FIG. 2 Single Check Valve Bailer

7.3.1 If adhesives are avoided, PVC is acceptable in many cases, although their use may still lead to some problems if trace organics are of concern or NAPL is present (24). At present, interactions occurring between PVC and ground water are not well understood. Tin, in the form of an organotin stabilizer added to PVC, may enter samples taken from PVC (25).

7.3.2 The structural integrity concerns with PVC increase with the concentration of PVC solvents in ground water. As such, NAPLs that are PVC solvents are a primary concern. Potential NAPLs that are of a concern for PVC and other commonly used plastics are listed in Table 2. Degradation of these materials is primarily by solvation, which is the penetration of the material by the solvent that ultimately causes softening and swelling that can lead to failure. Even in lower concentrations, however, PVC solvents may deteriorate PVC. Methylene chloride, which is a very effective PVC solvent, will soften PVC at one-tenth its solubility limit while trichloroethylene, which is a less effective solvent, will begin to soften PVC at six-tenths its solubility limit (16).

7.4 TFE-Fluorocarbon Resins:

7.4.1 TFE-fluorocarbon resins are highly inert and have sufficient mechanical strength to permit fabrication of sampling devices. Molded parts are exposed to high temperature during fabrication that destroys any organic contaminants. The evolution of fluorinated compounds can occur during fabrication, will cease rapidly, and does not occur afterwards unless the resin is heated to its melting point. Relative to PVC and stainless steel, TFE-fluorocarbon is less sorptive of cations (27).

7.4.2 Extruded TFE-fluorocarbon tubing may contain surface traces of an organic solvent extrusion aid. This can be removed easily by the fabricator and, once removed by flushing, should not affect the sample. TFE-fluorocarbon fluorinated ethylene propylene (FEP) and TFE-fluorocarbon perfluoroalkoxy (PFA) resins do not require this extrusion aid and may be suitable for sample tubing as well. Unsintered threadsealant tape of TFE-fluorocarbon is available in an "oxygen service" grade and contains no extrusion aid and lubricant.

7.5 Glass and Stainless Steel:

7.5.1 Glass and stainless steel are two other materials generally considered inert in aqueous environments. Glass is generally not used, however, because of difficulties in handling and fabrication. Stainless steel is strong and easily machined to fabricate equipment. It is, however, not totally immune to corrosion that could release metallic contaminants (see Table 1). Stainless steel contains various alloying metals, some of these (that is, nickel) may catalyze reactions. The alloyed constituents of some stainless steels can be solubilized by the pitting action of nonoxidizing anions such as chloride, fluoride, and in some instances sulfate, over a range of pH conditions. Aluminum, titanium, polyethylene, and other corrosion-resistant materials have been proposed by some as acceptable materials, depending on ground-water quality and the constituents of interest.

7.5.2 Where temporarily installed sampling equipment is used, the sampling device that is chosen should be able to be cleaned of trace organics, and must be cleaned between each monitoring well use to avoid cross-contamination of wells and samples. Decontamination of equipment PVC and stainless steel constructed sampling equipment exposed to organic chemicals, pesticides, or nitroaromatic compounds generally can be successfully accomplished using a hot detergent solution followed by a hot water rinse. Equipment constructed of LDPE and TFE-fluorocarbon should also be hot air dried or oven dried at approximately 105 °C to remove residual pesticides and organic contaminants, respectively (28, 29). A common method to verify that the device is "clean" and acceptable is to analyze a sample (equipment blank) that has been soaked in or passed through the sampling device, or both, to check for the background levels that may result from the sampling materials or from field conditions. Thus, all samplings for trace materials should be accompanied by samples that represent the sampling equipment blank, in addition to other blanks (field blank and trip blank). Decontamination procedures are further discussed in Practice D5088.

7.6 Additional samples are often collected in the field and spiked (spiked field samples) in order to verify that the sample handling procedures are valid. The American Chemical Society's committee on environmental improvement has published guidelines for data acquisition and data evaluation, which should be useful in such environmental evaluations (**30**).

🖽 D4448 – 01 (2019)

TABLE 1 Material Considerations In Selection Of Sampling Equipment (15)

Material	Considerations
Polytetrafluoroethylene	 Virgin PTFE readily sorbs some organic solutes (16) Ideal material in corrosive environments where inorganic compounds are of interest Useful where pure product (organic compound) or high concentrations of PVC solvents exist Potential structural problems because of its low tensile and compressive strengths, low wear resistance, and the extreme flexibility of the casing string as compared to other engineering plastics (17-19) Potential problems with obtaining a seal between the casing and the annular sealant because of PTFEs low coefficient of friction and antistick properties as compared to other plastics (19) Maximum string length of 2-in. (~5-cm) diameter schedule PTFE casing should not exceed about 375 ft (~115 m) (20) Expensive
Polyvinylchloride	 Leaching of compounds of tin or antimony, which are contained in original heat stabilizers during polymer formulation, could occur after long exposure When used in conjunction with glued joints, leaching of volatile organic compounds from PVC primer and glues, such as THF (tetrahydrofuran), MEK (methylethylketone), MIBK (methylisobutylketone) and cyclohexanone could leach into ground water. Therefore, threaded joints below the water table, sealed with O-rings or Teflon tape, are preferred Cannot be used where pure product or high concentrations of a PVC solvent exist There is conflicting data regarding the resistance of PVC to deterioration in the presence of gasoline (21) Maximum string length of 2-in. (~5-cm) diameter threaded PVC casing should not exceed 2000 ft (~610 m) (20) PVC can warp and melt if neat cement (cement and water) is used as an annular or surface seal because of heat of hydration (22, 17) PVC can volatilize CFCs into the atmosphere within the unsaturated zone, which can be a potential problem for studies of gas and moisture transport through the unsaturated zone Easy to cut, assemble, and place in the borehole Inexpensive
Stainless steel	 Generally has high corrosion resistance, which differs with type Corrosion can occur under acidic and oxidizing conditions Corrosion products are mostly iron compounds, with some trace elements Primarily two common types: (1) Type 304 Stainless Steel: Iron alloyed with the following elements (percentages): Chromium (18-20 %), Nickel (8-11 %), Manganese (2 %), Silicon (0.75 %), Carbon (0.08 %), Phosphorus (0.04 %), Sulfur (0.03 %) (2) SS 316: Iron alloyed with the following elements (in percentages): Chromium (16-18 %), Nickel (11-14 %), Manganese (2 %), Molybdenum (2-3 %), Silicon (0.75 %), Carbon (0.08 %), Phosphorus (0.04 %), Sulfur (0.03 %) Corrosion resistance is good for Type 304 stainless steel under aerobic conditions. Type 316 stainless steel has improved corrosion resistance over Type 304 under reducing conditions (23)
Galvanized steel	 Less corrosion resistance than stainless steel and more resistance to corrosion than carbon steel (see Carbon steel entry) Oxide coating could dissolve under chemically reduced conditions and release zinc and cadmium, and raise pH Weathered or corroded surfaces present active adsorption sites for organic and inorganic constituents
nttps://standards.iteh.ai/cata Carbon steel	 Inexpensive Inexpensive Inexpensive Inexpensive Inexpensive Corrosion products can occur (for example, iron and manganese oxides, metal sulfides, and dissolved metal species) Sorption of organic compounds onto metal corrosion products is possible Weathered surfaces present active adsorption sites for organic and inorganic constituents Inexpensive

8. Sampling Equipment

8.1 The choice of sampling technique must be based on an understanding of the hydrogeology of the site under investigation and the end use of the data. Since each technique has its advantages and disadvantages, no one technique can be chosen as the best overall technique. Since different techniques will likely yield different results, it is best to be consistent throughout an investigation to facilitate the comparison of data values over time. There is a fairly large choice of equipment presently available for ground-water sampling. The sampling devices can be categorized into the following nine basic types as described in the following sections:

8.1.1 Down-Hole Collection Devices:

8.1.1.1 Bailers, messenger bailers, or thief (31, 32) are examples of down-hole collection devices. They are not practical for removal of large volumes of water, but are relatively inexpensive permitting their dedicated use and are

widely used. These devices can be constructed in various shapes and sizes from a variety of materials. They do not subject the sample to pressure extremes.

8.1.1.2 A schematic of a single check valve unit is illustrated in Fig. 2. The bailer may be threaded in the middle so that additional lengths of blank casing may be added to increase the sampling volume. TFE-fluorocarbon, stainless steel, and PVC are the most common materials used for construction (33).

8.1.1.3 In operation, the single check valve bailer is gently lowered into the well to a depth just below the water surface, water enters the chamber through the bottom, and the weight of the water column closes the check valve upon bailer retrieval. The specific gravity of the ball should be about 1.4 to 2.0 so that the ball almost sits on the check valve seat during chamber filling. Upon bailer withdrawal, the ball will immediately seat without sample loss through the check valve.