

Edition 1.0 2020-09

INTERNATIONAL STANDARD

Display lighting unif ch STANDARD PREVIEW Part 2-4: Electro-optical measuring methods of laser module (standards.iten.al)

<u>IEC 62595-2-4:2020</u> https://standards.iteh.ai/catalog/standards/sist/390b82ad-0f2a-4f8b-b141-29da586af2b2/iec-62595-2-4-2020

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2020 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland Tel.: +41 22 919 02 11 info@iec.ch www.jec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

 IEC Customer Service Centre - webstore iec.ch/csc and collected
 Collected

 If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service
 CISPR.

 Centre: sales@iec.ch.
 IEC 62595-2-4:2020

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 000 terminological entries in English and French, with equivalent terms in 16 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary

67 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

https://standards.iteh.ai/catalog/standards/sist/390b82ad-0f2a-4f8b-b141-

29da586af2b2/iec-62595-2-4-2020

Edition 1.0 2020-09

INTERNATIONAL STANDARD

Display lighting unit the STANDARD PREVIEW Part 2-4: Electro-optical measuring methods of laser module

<u>IEC 62595-2-4:2020</u> https://standards.iteh.ai/catalog/standards/sist/390b82ad-0f2a-4f8b-b141-29da586af2b2/iec-62595-2-4-2020

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 31.120, 31.260

ISBN 978-2-8322-8912-9

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FO	REWO	RD	6
IN	TRODU	CTION	8
1	Scop	e	9
2	Norm	ative references	9
3	Term	s, definitions, abbreviated terms, and letter symbols	9
	3.1	Terms and definitions	
	3.2	Abbreviated terms and letter symbols	
	3.2.1	•	
	3.2.2	Letter symbols	12
4	Stand	dard measuring conditions	14
	4.1	Standard measuring environmental conditions	14
	4.2	Standard measuring dark-room conditions	
	4.3	Safety requirements	14
	4.4	Standard DUT conditions	15
	4.5	Standard LMD requirements	15
	4.6	Standard measurement setup and coordinate system	17
5	Meas	suring methods	20
	5.1	General	20
	5.2	General	21
	5.2.1	General	21
	5.2.2		21
	5.2.3	CW and PWM operation	22
	5.2.4	CW and PWM operations https://standards.iteh.av/catalog/standards/sist/390b82ad-0f2a-4f8b-b141- Threshold currents_(dth)66af2b2/iec-62595-2-4-2020	23
	5.2.5		
	5.3	Spectra (wavelength) and chromaticity measurements	
	5.3.1	General	
	5.3.2	Measurement procedures	25
	5.4	FFP	26
	5.4.1	General	26
	5.4.2	Monochromatic FFP	26
	5.4.3	Colorimetric FFP	27
	5.5	Monochromatic speckle and colour speckle	30
	5.5.1	General	30
	5.5.2	Monochromatic speckle measurement affected by FFP	30
	5.5.3	Colour speckle measurement affected by FFP	32
	5.6	Temperature dependence	
	5.6.1	General	
	5.6.2	5 1	
	5.6.3	•	
	5.7	High-speed pulse modulation properties	
	5.7.1	General	
	5.7.2		
		informative) Laser devices	
	A.1	Edge-emitting laser diode	
	A.2	Single- and multi-transverse modes	
	A.3	Single- and multi-longitudinal modes	42

A.4 Vertical cavity surface-emitting laser diode (VCSEL)	43
A.5 Photon up-conversion laser device	45
Annex B (informative) Structure of laser module	46
B.1 Monochromatic laser module	46
B.2 RGB laser module	47
B.3 Other output optics	
Annex C (informative) Narrow-linewidth emission spectra of laser modules	49
C.1 Spectra of monochromatic high-power LD modules	
C.2 Spectra of multi-colour, single-longitudinal mode LD modules	
C.3 Spectra of multi-colour, multi-longitudinal mode LD modules	
C.4 Chromaticity measurements using a colorimeter	52
Annex D (informative) Chromaticity accuracy when measuring narrow spectral linewidth	53
D.1 General	53
D.2 Wavelength accuracy to keep chromaticity accuracy < 0,001 or < 0,005	
D.3 Spectral bandwidth to keep chromaticity accuracy < 0,001	
Annex E (informative) Numerical aperture (NA) of fibre	58
E.1 Fibre NA and maximum divergence angle	58
E.2 Colour-dependence of fibre NA	58
Annex F (informative) Conversion of the spherical and Cartesian coordinate systems	59
Annex G (informative) Centroid wavelength	60
Annex H (informative) Examples of colour speckle pattern on colorimetric FFPs of fibre output	62
H.1 General <u>IEC 62595-2-4:2020</u>	
H.2 Measured ^{tt} PF [/] ptandards.iteh.ai/catalog/standards/sist/390b82ad-0f2a-4f8b-b141-	62
Annex I (informative) Temperature dependence of LDs	65
I.1 Formulation of the thermal performance of LD chips	65
I.2 Calculated examples of <i>I-P</i> _O characteristics	66
I.3 Temperature dependence of emitting wavelengths	69
I.4 Temperature dependence of colour speckle and FFP	69
Annex J (informative) Eye diagram	71
J.1 Eye diagram	71
J.2 Examples of measured eye diagrams	72
Bibliography	73
Figure 1 – Measurement setup and coordinate system (spherical)	18
Figure 2 – Measurement setup and coordinate system (Cartesian)	
Figure 3 – Measurement setup and coordinates for speckle-related optical performance .	
Figure 4 – Example of <i>I-P</i> _o and <i>I- P</i> _o / <i>P</i> _i characteristics	
Figure 5 – Pulse repetition waveforms of PWM drive with respect to duty cycle	
Figure 6 – I_{th} and I - P_{o} characteristics	
Figure 7 – Example of measured colorimetric FFP	
Figure 8 – Example of conversion of the measured speckle data on the FFP into data	
on a uniform pattern	31

Figure 10 – Example of conversion of measured colour speckle chromaticity data on the FFP into data on a uniform pattern	33
Figure 11 – Temperature dependence measurement setup for high-power laser modules	36
Figure 12 – Temperature dependence measurement setup for low-power laser modules	37
Figure 13 – Measurement setup for output pulse waveform	38
Figure 14 – Example of input/output pulse waveforms	38
Figure A.1 – Schematic structure of narrow-stripe edge-emitting laser diode	40
Figure A.2 – Schematic structure of wide-stripe edge-emitting laser diode	41
Figure A.3 – Single- and multi-transverse mode patterns	42
Figure A.4 – Single- and multi-longitudinal mode patterns	42
Figure A.5 – Schematic structure of VCSEL	44
Figure A.6 – VCSEL array	44
Figure A.7 – Conceptual image of photon up-conversion	45
Figure A.8 – Example of SHG laser device emitting at 532 nm	
Figure B.1 – High-power monochromatic laser module	
Figure B.2 – High-power RGB laser module	
Figure B.3 – Low-power RGB laser module	
Figure B.4 – Other types of optical output	
Figure C.1 – Superposition of multi-mode structures of three LDs	
Figure C.2 – Spectral power density $S(\lambda)$ with a resolution of 0,1 nm	
Figure C.3 – Spectral power density S(1) with a resolution of 1 nm	
Figure C.4 – Example of RGB single 40 ngi/udihat mode Spectra 22-48b-b141-	
Figure D.1 – Calculated wavelength accuracy to keep $ \Delta x $, $ \Delta y < 0,001$	
Figure D.2 – Calculated wavelength accuracy to keep $ \Delta x $, $ \Delta y < 0,005$	54
Figure D.3 – Calculated wavelength accuracy to keep $ \Delta u' $, $ \Delta v' < 0,001$	55
Figure D.4 – Calculated wavelength accuracy to keep $ \Delta u' $, $ \Delta v' < 0,005$	55
Figure D.5 – Assumption for calculating the spectral bandwidth accuracy	56
Figure D.6 – Calculated spectral bandwidth accuracy to keep $ \Delta x $, $ \Delta y < 0,001$	56
Figure D.7 – Calculated spectral bandwidth accuracy to keep $ \Delta u' $, $ \Delta v' < 0,001$	57
Figure E.1 – Fibre cross-section of MMF (step-index)	
Figure G.1 – Example of laser spectrum (peak and centroid wavelengths)	60
Figure G.2 – Comparison of chromaticity error distributions between the data obtained by the peak wavelength and the centroid wavelength	61
Figure H.1 – Measured colour speckle patterns on colorimetric FFP for the low-power RGB laser module with an SMF output	62
Figure H.2 – Measured speckle-free colorimetric FFPs for the low-power RGB laser module with an SMF output	63
Figure H.3 – Example of speckled FFPs projected on the standard diffusive screen (<i>x-y</i> plane) out of the MMF of a high-power RGB laser module	63
Figure H.4 – Example of un-speckled FFPs projected on the standard diffusive screen $(x-y \text{ plane})$ out of the MMF of a high-power RGB laser module	64
Figure I.1 – Example of temperature dependence of <i>I</i> - <i>P</i> ₀ characteristics of an LD	
package	66

IEC 62595-2-4:2020 © IEC 2020 - 5 -

Figure I.2 – Example of temperature dependence of I - P_0 characteristics of an LD package with higher thermal resistance R_{th}	67
Figure I.3 – Example of temperature dependence of I - P_0 characteristics of an LD package for I_{th} = 0,25 (A) and T_0 = 100 (K)	68
Figure I.4 – Example of temperature dependence of output power, <i>P</i> ₀ , for an RGB laser module	68
Figure I.5 – Example of temperature dependence of R, G, B wavelengths for an RGB laser	69
Figure I.6 – Example of temperature dependence of speckled FFP for an RGB laser	70
Figure J.1 – Example of PRBS	71
Figure J.2 – Example of eye diagram	71
Figure J.3 – Eye diagrams for digital frequencies at 100 MHz, 200 MHz, 300 MHz, and 500 MHz (R channel at <i>I</i> = 38mA)	72
Table 1 – Letter symbols (quantity symbols/unit symbols)	12
Table 2 – Summarised results of the colour speckle measurements (example)	34

Table A.1 – Features of single- and multi-mode LDs	.43
Table C.1 – CIE 1931 chromaticity calculated from the higher to the lower resolution	
spectra	.51

(standards.iteh.ai)

<u>IEC 62595-2-4:2020</u> https://standards.iteh.ai/catalog/standards/sist/390b82ad-0f2a-4f8b-b141-29da586af2b2/iec-62595-2-4-2020

INTERNATIONAL ELECTROTECHNICAL COMMISSION

DISPLAY LIGHTING UNIT -

Part 2-4: Electro-optical measuring methods of laser module

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter. IEC 62595-2-4:2020
- 5) IEC itself does not provide any attestation of conformity independent certification bodies provide conformity assessment services and, in some areas access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62595-2-4 has been prepared by IEC technical committee 110: Electronic displays.

The text of this International Standard is based on the following documents:

FDIS	Report on voting
110/1224/FDIS	110/1246/RVD

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 62595 series, published under the general title *Display lighting unit*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>IEC 62595-2-4:2020</u> https://standards.iteh.ai/catalog/standards/sist/390b82ad-0f2a-4f8b-b141-29da586af2b2/iec-62595-2-4-2020

INTRODUCTION

Laser modules, in general, have been used widely for various applications such as, optical communications, laser beam machining, bar-code reading, optical disc drives and so on. The laser module in this document is limited to display applications. It is a key light source for laser displays, laser backlight/front light units for liquid crystal displays (LCDs), holographic displays and so on. A typical laser module for display applications comprises multiple laser devices, electrical inputs and an optical output combining the outputs of the laser diodes (LDs). The laser device used in the laser module here is an edge-emitting laser diode (LD), a vertical cavity surface-emitting laser diode (VCSEL), or a photon up-conversion laser including second-harmonic generation (SHG).

The optical output is usually provided out of an optical component such as a pigtail fibre, a fibre with a connector, a waveguide, a light guide, or a lens unit for the convenience of users.

In advanced display applications, not only visible laser diodes but also near infrared (near IR) laser diodes are included in the module for sensor applications such as the LiDAR system (light detection and ranging, or laser image detection and ranging).

Therefore, the wavelength range for display applications covers all the visible wavelengths from 380 nm to 780 nm, including the laser diodes for pumping phosphors. That is, a violet laser diode emitting at 405 nm is included. Photometric and colorimetric measurements are the primary focus of this document. The near IR LD for a LiDAR system included in the module can be measured as a monochromatic light output using the light measuring device (LMD) covering the IR wavelength region. However, the measurements of IR lasers are out of the scope of this document. **(standards.iteh.ai)**

It is important for the designing of the above display systems and devices to standardise the electro-optical measuring methods df Cthe59faser20modules. Photometric and colorimetric measurements are tracticularly to the output display of application because each LD has different electrical and optical performances/isuch as threshold currents, efficiency, spectrum, far field pattern (FFP) of the output laser beam, speckle-related behaviours and their temperature dependence.

Particularly for the colour speckle of the output laser beam, the measured speckle data are very useful to predict the visual quality of laser displays and to design speckle reducing devices.

DISPLAY LIGHTING UNIT -

Part 2-4: Electro-optical measuring methods of laser module

1 Scope

This part of IEC 62595 specifies the electro-optical measuring methods of laser modules with multiple laser devices and an optical output for various displays and display lighting applications which require photometric and colorimetric measurements, covering the wavelength range of 380 nm to 780 nm. The module has multiple laser devices such as edge-emitting laser diodes (LDs), vertical cavity surface-emitting laser diodes (VCSELs), or photon up-conversion laser devices including second-harmonic generation (SHG). The module has an optical output such as an optical fibre, waveguide, light guide, lens unit, or other optics, emitting a laser beam combining the output of the multiple laser devices.

NOTE See 3.1.1 for a definition of a laser device inside the laser module.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60825-1, Safety of laser products <u>Rart515 Equipment classification and requirements</u> https://standards.iteh.ai/catalog/standards/sist/390b82ad-0f2a-4f8b-b141-

IEC 62906-5-2, Laser display devices all Part 5525-Optical measuring methods of speckle contrast

IEC 62906-5-4, Laser display devices – Part 5-4: Optical measuring methods of colour speckle

3 Terms, definitions, abbreviated terms, and letter symbols

3.1 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

3.1.1

laser device

<of display lighting unit> semiconductor-based or compactly assembled solid-state upconversion laser

EXAMPLE Edge-emitting laser diode, vertical cavity surface-emitting laser diode, or photon up-conversion laser including second-harmonic generation (SHG), or third-harmonic generation (THG).

Note 1 to entry: See Annex A.

3.1.2

laser module

<of display lighting unit> display light source with an optical output combining the emitted lights of multiple laser devices

3.1.3

monochromatic laser module

<of display lighting unit> display light source with an optical output combining the emitted lights of multiple laser devices within the wavelength range of 10 nm

Note 1 to entry: See Figure B.1 in Annex B.

3.1.4

multi-colour laser module

<of display lighting unit> display light source with an optical output combining the emitted lights of multiple laser devices emitting at different monochromatic wavelengths

3.1.5

RGB laser module

<of display lighting unit> display light source with an optical output combining the emitted lights of red, green, blue monochromatic laser devices

Note 1 to entry: See Figure B.2 and Figure B.3 in Annex B.

3.1.6 **iTeh STANDARD PREVIEW**

display using a laser or lasers, based on stimulated emission

Note 1 to entry: This term is specified as "laser display device (LDD)" in IEC 62906-1-2. However, the term "laser display" covers more widely and appropriately that "laser display device".

https://standards.iteh.ai/catalog/standards/sist/390b82ad-0f2a-4f8b-b141-

3.1.7

29da586af2b2/iec-62595-2-4-2020

fibre output power

<of laser module> optical output power of the optical fibre facet equipped with the laser module

3.1.8

wall-plug efficiency

WPE

<of laser module> power efficiency of the optical output power by the electrical input power of the laser module

3.1.9

threshold current

<of laser module> current input level of a laser module at which an optical output of the laser module, combining the emitted lights of multiple laser devices, starts laser oscillation

3.1.10

near field pattern

NFP

<of laser module> output power distribution on the output aperture of the laser module

3.1.11 far field pattern FFP

monochromatic FFP

<of laser module> output power distribution measured on the plane at a distance which is significantly greater than W^2 / λ , where λ is the wavelength and W is the largest dimension in the output aperture

3.1.12 colorimetric far field pattern colorimetric FFP colour FFP

<of laser module> output chromaticity distribution measured on the plane at a distance which is significantly greater than W^2 / λ , where λ is the wavelength and W is the largest dimension in the output aperture

3.1.13

XYZ filters, pl.

set of optical filters which will produce an optical measuring device that approximately has the spectral responsivity of colour matching functions \overline{x} , \overline{y} , \overline{z} in the CIE 1931 standard colorimetric system when used together with the intended lens, sensors, and other components

3.1.14

laser multi-meter

light measuring device for measuring centroid wavelengths and radiometric quantities of laser light sources with very narrow spectral linewidths using non-spectrometric methods, also deriving colorimetric and photometric quantities using the colour-matching functions

Note 1 to entry: See [1]¹.

3.2 Abbreviated terms and letter symbols

3.2.1	Abbreviated terms
ACC	automatic current controtandards.iteh.ai)
APC	automatic power control
BW	<u>IEC 62595-2-4:2020</u> bandwidth https://standards.iteh.ai/catalog/standards/sist/390b82ad-0f2a-4f8b-b141-
CW	continuous wave 29da586af2b2/iec-62595-2-4-2020
DBR	distributed Bragg reflector
DUT	device under test
FFP	far field pattern
FWHM	full width at half maximum
IR	infrared
LCD	liquid crystal display
LD	laser diode
Lidar	light detection and ranging (or laser image detection and ranging)
LMD	light-measuring device
MMF	multi-mode fibre
MTF	modulation transfer function
NA	numerical aperture
ND	neutral density
NFP	near field pattern
NRZ	non-return-to-zero
РСВ	printed circuit board
PD	photodiode

¹ Numbers in square brackets refer to the Bibliography.

- PPG pulse pattern generator
- PRBS pseudo-random binary (or bit) sequence
- PWM pulse width modulation
- QPM quasi-phase-matching
- RGB red, green, blue
- RMS root mean square
- RT room temperature
- SHG second harmonic generation
- SLM spatial light modulator
- SMF single-mode fibre
- SHG second-harmonic generation
- TE transverse electric
- TEC Thermo-electric cooler
- THG third harmonic generation
- TM transverse magnetic
- VCSEL vertical cavity surface-emitting laser diode
- WPE wall-plug efficiency

3.2.2 Letter symbols eh STANDARD PREVIEW

The letter symbols for a laser module are shown in Table 1ai)

Table 1 – Letter symbols (quantity symbols/unit symbols)

	2a-4f8b-b141- Symbol	Unit	
Electrical			
Current	Ι	А	
Threshold current	I _{th}	А	
Voltage	V	V	
Input electrical power	IV, P _i	W	

Definition	Symbol	Unit
Optical output		
Optical output power	Po	W
Output of red power	P _R	W
Output of green power	P _G	W
Output of blue power	PB	W
Wall-plug efficiency	P _o / P _i	
optical output (W) / electrical input (W)	¹ o ^{/ 1} i	-
Slope efficiency	η_{s}	W/A
Size of output aperture	W	nm
Wavelength	х	nm
Centroid wavelength	λ_{c}	nm
Peak wavelength	λ _p	nm
Spectral power density	$S(\lambda)$	W/nm
CIE 1931 chromaticity	х, у	-
CIE 1976 chromaticity	u', v`	-
Rise/fall time of output waveform	t _r , t _f	S
Delay time of output waveformen STANDARD PREV		S
Period of output waveform (standards.iteh.ai)	Т	S
Direct measurement setup		
Distance from DUT output to measurement plane along 25-2-4:2020		m
Azimuth angle https://standards.iteh.ai/catalog/standards/sist/390b82ad-0: 29da586af2b2/jec 62595-2-4 2020	2a-418b-b,141-	degree
Zenith angle	θ	degree
Screen measurement setup (speckle measur	rement)	
Distance from DUT output to screen centre	Ls	m
Distance from LMD to screen centre	Ds	m
Angle between LMD and DUT	θ_{s}	degree
Speckle		
Speckle contrast	C_{s}	-
Speckle contrast for red colour	C_{s-R}	-
Speckle contrast for green colour	C _{s-G}	-
Speckle contrast for blue colour	C _{s-B}	-
Photometric speckle contrast	C _{ps}	-
u'-variance of CIE 1976 chromaticity distribution of colour speckle	$\sigma_{u'}$	-
v'-variance of CIE 1976 chromaticity distribution of colour speckle	$\sigma_{v'}$	-
Covariance of CIE 1976 chromaticity distribution of colour speckle	μ _{u'v}	_
, , , , , , , , , , , , , , , , , , , ,	uv	