
Designation: G16 − 13 (Reapproved 2019)

Standard Guide for
Applying Statistics to Analysis of Corrosion Data1

This standard is issued under the fixed designation G16; the number immediately following the designation indicates the year of original
adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript
epsilon (´) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This guide covers and presents briefly some generally
accepted methods of statistical analyses which are useful in the
interpretation of corrosion test results.

1.2 This guide does not cover detailed calculations and
methods, but rather covers a range of approaches which have
found application in corrosion testing.

1.3 Only those statistical methods that have found wide
acceptance in corrosion testing have been considered in this
guide.

1.4 The values stated in SI units are to be regarded as
standard. No other units of measurement are included in this
standard.

1.5 This international standard was developed in accor-
dance with internationally recognized principles on standard-
ization established in the Decision on Principles for the
Development of International Standards, Guides and Recom-
mendations issued by the World Trade Organization Technical
Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:2

E178 Practice for Dealing With Outlying Observations
E691 Practice for Conducting an Interlaboratory Study to

Determine the Precision of a Test Method
G46 Guide for Examination and Evaluation of Pitting Cor-

rosion
IEEE/ASTM SI 10 American National Standard for Use of

the International System of Units (SI): The Modern Metric
System

3. Significance and Use

3.1 Corrosion test results often show more scatter than
many other types of tests because of a variety of factors,

including the fact that minor impurities often play a decisive
role in controlling corrosion rates. Statistical analysis can be
very helpful in allowing investigators to interpret such results,
especially in determining when test results differ from one
another significantly. This can be a difficult task when a variety
of materials are under test, but statistical methods provide a
rational approach to this problem.

3.2 Modern data reduction programs in combination with
computers have allowed sophisticated statistical analyses on
data sets with relative ease. This capability permits investiga-
tors to determine if associations exist between many variables
and, if so, to develop quantitative expressions relating the
variables.

3.3 Statistical evaluation is a necessary step in the analysis
of results from any procedure which provides quantitative
information. This analysis allows confidence intervals to be
estimated from the measured results.

4. Errors

4.1 Distributions—In the measurement of values associated
with the corrosion of metals, a variety of factors act to produce
measured values that deviate from expected values for the
conditions that are present. Usually the factors which contrib-
ute to the error of measured values act in a more or less random
way so that the average of several values approximates the
expected value better than a single measurement. The pattern
in which data are scattered is called its distribution, and a
variety of distributions are seen in corrosion work.

4.2 Histograms—A bar graph called a histogram may be
used to display the scatter of the data. A histogram is
constructed by dividing the range of data values into equal
intervals on the abscissa axis and then placing a bar over each
interval of a height equal to the number of data points within
that interval. The number of intervals should be few enough so
that almost all intervals contain at least three points; however,
there should be a sufficient number of intervals to facilitate
visualization of the shape and symmetry of the bar heights.
Twenty intervals are usually recommended for a histogram.
Because so many points are required to construct a histogram,
it is unusual to find data sets in corrosion work that lend
themselves to this type of analysis.

1 This guide is under the jurisdiction of ASTM Committee G01 on Corrosion of
Metals and is the direct responsibility of Subcommittee G01.05 on Laboratory
Corrosion Tests.
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4.3 Normal Distribution—Many statistical techniques are
based on the normal distribution. This distribution is bell-
shaped and symmetrical. Use of analysis techniques developed
for the normal distribution on data distributed in another
manner can lead to grossly erroneous conclusions. Thus, before
attempting data analysis, the data should either be verified as
being scattered like a normal distribution, or a transformation
should be used to obtain a data set which is approximately
normally distributed. Transformed data may be analyzed sta-
tistically and the results transformed back to give the desired
results, although the process of transforming the data back can
create problems in terms of not having symmetrical confidence
intervals.

4.4 Normal Probability Paper—If the histogram is not
confirmatory in terms of the shape of the distribution, the data
may be examined further to see if it is normally distributed by
constructing a normal probability plot as described as follows
(1).3

4.4.1 It is easiest to construct a normal probability plot if
normal probability paper is available. This paper has one linear
axis, and one axis which is arranged to reflect the shape of the
cumulative area under the normal distribution. In practice, the
“probability” axis has 0.5 or 50 % at the center, a number
approaching 0 percent at one end, and a number approaching
1.0 or 100 % at the other end. The marks are spaced far apart
in the center and close together at the ends. A normal
probability plot may be constructed as follows with normal
probability paper.

NOTE 1—Data that plot approximately on a straight line on the
probability plot may be considered to be normally distributed. Deviations
from a normal distribution may be recognized by the presence of
deviations from a straight line, usually most noticeable at the extreme ends
of the data.

4.4.1.1 Number the data points starting at the largest nega-
tive value and proceeding to the largest positive value. The
numbers of the data points thus obtained are called the ranks of
the points.

4.4.1.2 Plot each point on the normal probability paper such
that when the data are arranged in order: y (1), y (2), y (3), ...,
these values are called the order statistics; the linear axis
reflects the value of the data, while the probability axis location
is calculated by subtracting 0.5 from the number (rank) of that
point and dividing by the total number of points in the data set.

NOTE 2—Occasionally two or more identical values are obtained in a
set of results. In this case, each point may be plotted, or a composite point
may be located at the average of the plotting positions for all the identical
values.

4.4.2 If normal probability paper is not available, the
location of each point on the probability plot may be deter-
mined as follows:

4.4.2.1 Mark the probability axis using linear graduations
from 0.0 to 1.0.

4.4.2.2 For each point, subtract 0.5 from the rank and divide
the result by the total number of points in the data set. This is
the area to the left of that value under the standardized normal

distribution. The cumulative distribution function is the
number, always between 0 and 1, that is plotted on the
probability axis.

4.4.2.3 The value of the data point defines its location on the
other axis of the graph.

4.5 Other Probability Paper—If the histogram is not sym-
metrical and bell-shaped, or if the probability plot shows
nonlinearity, a transformation may be used to obtain a new,
transformed data set that may be normally distributed. Al-
though it is sometimes possible to guess at the type of
distribution by looking at the histogram, and thus determine the
exact transformation to be used, it is usually just as easy to use
a computer to calculate a number of different transformations
and to check each for the normality of the transformed data.
Some transformations based on known non-normal
distributions, or that have been found to work in some
situations, are listed as follows:

y = log x y = exp x
y5œx y = x2

y = 1 ⁄x y5sin21 œx/n

where:
y = transformed datum,
x = original datum, and
n = number of data points.

Time to failure in stress corrosion cracking usually is best
fitted with a log x transformation (2, 3).

Once a set of transformed data is found that yields an
approximately straight line on a probability plot, the statistical
procedures of interest can be carried out on the transformed
data. Results, such as predicted data values or confidence
intervals, must be transformed back using the reverse transfor-
mation.

4.6 Unknown Distribution—If there are insufficient data
points, or if for any other reason, the distribution type of the
data cannot be determined, then two possibilities exist for
analysis:

4.6.1 A distribution type may be hypothesized based on the
behavior of similar types of data. If this distribution is not
normal, a transformation may be sought which will normalize
that particular distribution. See 4.5 above for suggestions.
Analysis may then be conducted on the transformed data.

4.6.2 Statistical analysis procedures that do not require any
specific data distribution type, known as non-parametric
methods, may be used to analyze the data. Non-parametric tests
do not use the data as efficiently.

4.7 Extreme Value Analysis—In the case of determining the
probability of perforation by a pitting or cracking mechanism,
the usual descriptive statistics for the normal distribution are
not the most useful. In this case, Guide G46 should be
consulted for the procedure (4).

4.8 Significant Digits—IEEE/ASTM SI 10 should be fol-
lowed to determine the proper number of significant digits
when reporting numerical results.

4.9 Propagation of Variance—If a calculated value is a
function of several independent variables and those variables
have errors associated with them, the error of the calculated

3 The boldface numbers in parentheses refer to a list of references at the end of
this standard.
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value can be estimated by a propagation of variance technique.
See Refs (5) and (6) for details.

4.10 Mistakes—Mistakes either in carrying out an experi-
ment or in calculations are not a characteristic of the population
and can preclude statistical treatment of data or lead to
erroneous conclusions if included in the analysis. Sometimes
mistakes can be identified by statistical methods by recogniz-
ing that the probability of obtaining a particular result is very
low.

4.11 Outlying Observations—See Practice E178 for proce-
dures for dealing with outlying observations.

5. Central Measures

5.1 It is accepted practice to employ several independent
(replicate) measurements of any experimental quantity to
improve the estimate of precision and to reduce the variance of
the average value. If it is assumed that the processes operating
to create error in the measurement are random in nature and are
as likely to overestimate the true unknown value as to
underestimate it, then the average value is the best estimate of
the unknown value in question. The average value is usually
indicated by placing a bar over the symbol representing the
measured variable.

NOTE 3—In this standard, the term “mean” is reserved to describe a
central measure of a population, while average refers to a sample.

5.2 If processes operate to exaggerate the magnitude of the
error either in overestimating or underestimating the correct
measurement, then the median value is usually a better
estimate.

5.3 If the processes operating to create error affect both the
probability and magnitude of the error, then other approaches
must be employed to find the best estimation procedure. A
qualified statistician should be consulted in this case.

5.4 In corrosion testing, it is generally observed that average
values are useful in characterizing corrosion rates. In cases of
penetration from pitting and cracking, failure is often defined
as the first through penetration and in these cases, average
penetration rates or times are of little value. Extreme value
analysis has been used in these cases, see Guide G46.

5.5 When the average value is calculated and reported as the
only result in experiments when several replicate runs were
made, information on the scatter of data is lost.

6. Variability Measures

6.1 Several measures of distribution variability are available
which can be useful in estimating confidence intervals and
making predictions from the observed data. In the case of
normal distribution, a number of procedures are available and
can be handled with computer programs. These measures
include the following: variance, standard deviation, and coef-
ficient of variation. The range is a useful non-parametric
estimate of variability and can be used with both normal and
other distributions.

6.2 Variance—Variance, σ2, may be estimated for an experi-
mental data set of n observations by computing the sample
estimated variance, S2, assuming all observations are subject to
the same errors:

S2 5
(d 2

n 2 1
(1)

where:
d = the difference between the average and the mea-

sured value,
n − 1 = the degrees of freedom available.

Variance is a useful measure because it is additive in systems
that can be described by a normal distribution; however, the
dimensions of variance are square of units. A procedure known
as analysis of variance (ANOVA) has been developed for data
sets involving several factors at different levels in order to
estimate the effects of these factors. (See Section 9.)

6.3 Standard Deviation—Standard deviation, σ, is defined
as the square root of the variance. It has the property of having
the same dimensions as the average value and the original
measurements from which it was calculated and is generally
used to describe the scatter of the observations.

6.3.1 Standard Deviation of the Average—The standard
deviation of an average, Sx̄, is different from the standard
deviation of a single measured value, but the two standard
deviations are related as in (Eq 2):

Sx̄ 5
S

=n
(2)

where:
n = the total number of measurements which were used to

calculate the average value.

When reporting standard deviation calculations, it is impor-
tant to note clearly whether the value reported is the standard
deviation of the average or of a single value. In either case, the
number of measurements should also be reported. The sample
estimate of the standard deviation is s.

6.4 Coeffıcient of Variation—The population coefficient of
variation is defined as the standard deviation divided by the
mean. The sample coefficient of variation may be calculated as
S/x̄ and is usually reported in percent. This measure of
variability is particularly useful in cases where the size of the
errors is proportional to the magnitude of the measured value
so that the coefficient of variation is approximately constant
over a wide range of values.

6.5 Range—The range is defined as the difference between
the maximum and minimum values in a set of replicate data
values. The range is non-parametric in nature, that is, its
calculation makes no assumption about the distribution of
error. In cases when small numbers of replicate values are
involved and the data are normally distributed, the range, w,
can be used to estimate the standard deviation by the relation-
ship:

S.
w

=n
, n,12 (3)

where:
S = the estimated sample standard deviation,
w = the range, and
n = the number of observations.
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The range has the same dimensions as standard deviation. A
tabulation of the relationship between σ and w is given in Ref
(7).

6.6 Precision—Precision is closeness of agreement between
randomly selected individual measurements or test results. The
standard deviation of the error of measurement may be used as
a measure of imprecision.

6.6.1 One aspect of precision concerns the ability of one
investigator or laboratory to reproduce a measurement previ-
ously made at the same location with the same method. This
aspect is sometimes called repeatability.

6.6.2 Another aspect of precision concerns the ability of
different investigators and laboratories to reproduce a measure-
ment. This aspect is sometimes called reproducibility.

6.7 Bias—Bias is the closeness of agreement between an
observed value and an accepted reference value. When applied
to individual observations, bias includes a combination of a
random component and a component due to systematic error.
Under these circumstances, accuracy contains elements of both
precision and bias. Bias refers to the tendency of a measure-
ment technique to consistently under- or overestimate. In cases
where a specific quantity such as corrosion rate is being
estimated, a quantitative bias may be determined.

6.7.1 Corrosion test methods which are intended to simulate
service conditions, for example, natural environments, often
are more severe on some materials than others, as compared to
the conditions which the test is simulating. This is particularly
true for test procedures which produce damage rapidly as
compared to the service experience. In such cases, it is
important to establish the correspondence between results from
the service environment and test results for the class of material
in question. Bias in this case refers to the variation in the
acceleration of corrosion for different materials.

6.7.2 Another type of corrosion test method measures a
characteristic that is related to the tendency of a material to
suffer a form of corrosion damage, for example, pitting
potential. Bias in this type of test refers to the inability of the
test to properly rank the materials to which the test applies as
compared to service results. Ranking may also be used as a
qualitative estimate of bias in the test method types described
in 6.7.1.

7. Statistical Tests

7.1 Null Hypothesis Statistical Tests are usually carried out
by postulating a hypothesis of the form: the distribution of data
under test is not significantly different from some postulated
distribution. It is necessary to establish a probability that will
be acceptable for rejecting the null hypothesis. In experimental
work it is conventional to use probabilities of 0.05 or 0.01 to
reject the null hypothesis.

7.1.1 Type I errors occur when the null hypothesis is
rejected falsely. The probability of rejecting the null hypothesis
falsely is described as the significance level and is often
designated as α.

7.1.2 Type II errors occur when the null hypothesis is
accepted falsely. If the significance level is set too low, the
probability of a Type II error, β, becomes larger. When a value
of α is set, the value of β is also set. With a fixed value of α,

it is possible to decrease β only by increasing the sample size
assuming no other factors can be changed to improve the test.

7.2 Degrees of Freedom—The degrees of freedom of a
statistical test refer to the number of independent measure-
ments that are available for the calculation.

7.3 t Test—The t statistic may be written in the form:

t 5
? x̄ 2 µ?

S~ x̄!
(4)

where:
x̄ = the sample average,
µ = the population mean, and
S(x̄) = estimated standard deviation of the sample average.

The t distribution is usually tabulated in terms of significance
levels and degrees of freedom.

7.3.1 The t test may be used to test the null hypothesis:

m 5 µ (5)

For example the value m is not significantly different than µ,
the population mean. The t test is then:

t 5
? x̄ 2 m?

S~x! Œ1
n

(6)

The calculated value of t may be compared to the value of t
for the degrees of freedom, n, and the significance level.

7.3.2 The t statistic may be used to obtain a confidence
interval for an unknown value, for example, a corrosion rate
value calculated from several independent measurements:

~ x̄ 2 t S~ x̄!!,µ,~ x̄1t S~ x̄!! (7)

where:
tS(x̄) = one half width confidence interval associated with

the significance level chosen.

7.3.3 The t test is often used to test whether there is a
significant difference between two sample averages. In this
case, the expression becomes:

t 5
? x̄1 2 x̄2?

S ~x! =1/n111/n2

(8)

where:
x̄1 and x̄2 = sample averages,
n1 and n2 = number of measurements used in calculating x̄1

and x̄2 respectively, and
S(x) = pooled estimate of the standard deviation from

both sets of data.

i.e.:

S~x! 5Œ~n1 2 1!S2~x 1!1~n2 2 1!S2~x2!

n11n2 2 2
(9)

7.3.4 One sided t test. The t function is symmetrical and can
have negative as well as positive values. In the above
examples, only absolute values of the differences were dis-
cussed. In some cases, a null hypothesis of the form:
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µ.m (10)

or

µ,m

may be desired. This is known as a one sided t test and the
significance level associated with this t value is half of that for
a two sided t.

7.4 F Test—Labeling the variable with the larger observed
variance as x1, the F statistic is used to test whether the
variance associated with that variable is significantly larger
than the variable associated with variable x2. The F statistic is
then:

Fx1, x2 5
S2~x1!
S2~x2!

(11)

The F test is an important component in the analysis of
variance used in experimental designs. Values of F are tabu-
lated for significance levels and degrees of freedom for both
variables. In cases where the data are not normally distributed,
the F test approach may falsely show a significant effect
because of the non-normal distribution rather than an actual
difference in variances being compared.

7.5 Correlation Coeffıcient—The correlation coefficient, r,
is a measure of a linear association between two random
variables. Correlation coefficients vary between −1 and +1 and
the closer to either −1 or +1, the better the correlation. The sign
of the correlation coefficient simply indicates whether the
correlation is positive (y increases with x) or negative (y
decreases as x increases). The correlation coefficient, r, is given
by:

r 5
@(~xi 2 x̄!~yi 2 ȳ!#

@(~xi 2 x̄!2(~yi 2 ȳ!2#
1
2

5
~( xi yi! 2 nx̄ȳ

$@( ~xi
2! 2 n x̄2# @( ~yi

2! 2 n ȳ2#%
1
2

(12)

where:
xi = observed values of random variable x,
yi = observed values of random variable y,
x̄ = average value of x,
ȳ = average value of y, and
n = number of observations.

Generally, r2 values are preferred because they avoid the
problem of sign and the r2 values relate directly to variance.
Values of r or r2 have been tabulated for different significance
levels and degrees of freedom. In general, it is desirable to
report values of r or r2 when presenting correlations and
regression analyses.

NOTE 4—The procedure for calculating correlation coefficient does not
require that the x and y variables be random and consequently, some
investigators have used the correlation coefficient as an indication of
goodness of fit of data in a regression analysis. However, the significance
test using correlation coefficient requires that the x and y values be
independent variables of a population measured on randomly selected
samples.

7.6 Sign Test—The sign test is a non-parametric test used in
sets of paired data to determine if one component of the pair is

consistently larger than the other (8). In this test method, the
values of the data pairs are compared, and if the first entry is
larger than the second, a plus sign is recorded. If the second
term is larger, then a minus sign is recorded. If both are equal,
then no sign is recorded. The total number of plus signs, P, and
minus signs, N, is computed. Significance is determined by the
following test:

?P 2 N ?.k=P1N (13)

where k = a function of significance level as follows:
k Significance Level

__ ________________
1.6 0.10
2.0 0.05
2.6 0.01

The sign test does not depend on the magnitude of the
difference and so can be used in cases where normal statistics
would be inappropriate or impossible to apply.

7.7 Outside Count—The outside count test is a useful
non-parametric technique to evaluate whether the magnitude of
one of two data sets of approximately the same number of
values is significantly larger than the other. The details of the
procedure may be found elsewhere (8).

7.8 Corner Count—The corner count test is a non-
parametric graphical technique for determining whether there
is correlation between two variables. It is simpler to apply than
the correlation coefficient, but requires a graphical presentation
of the data. The detailed procedure may be found elsewhere
(8).

8. Curve Fitting—Method of Least Squares

8.1 It is often desirable to determine the best algebraic
expression to fit a data set with the assumption that a normally
distributed random error is operating. In this case, the best fit
will be obtained when the condition of minimum variance
between the measured value and the calculated value is
obtained for the data set. The procedures used to determine
equations of best fit are based on this concept. Software is
available for computer calculation of regression equations,
including linear, polynomial, and multiple variable regression
equations.

8.2 Linear Regression—2 Variables—Linear regression is
used to fit data to a linear relationship of the following form:

y 5 mx1b (14)

In this case, the best fit is given by:

m 5 ~n(xy 2 (x(y! /@n(x 2 2 ~(x!2# (15)

b 5
1
n

@(x 2 m(y# (16)

where:
y = the dependent variable
x = the independent variable,
m = the slope of the estimated line,
b = the y intercept of the estimated line,
∑x = the sum of x values and so forth, and
n = the number of observations of x and y.
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This standard deviation of m and the standard error of the
expression are often of interest and may be calculated easily (5,
7, 9). One problem with linear regression is that all the errors
are assumed to be associated with the dependent variable, y,
and this may not be a reasonable assumption. A variation of the
linear regression approach is available, assuming the fitting
equation passes through the origin. In this case, only one
adjustable parameter will result from the fit. It is possible to use
statistical tests, such as the F test, to compare the goodness of
fit between this approach and the two adjustable parameter fits
described above.

8.3 Polynomial Regression—Polynomial regression analy-
sis is used to fit data to a polynomial equation of the following
form:

y 5 a1bx1cx 21dx3 and so forth (17)

where:
a, b, c, d = adjustable constants to be used to fit the data set,
x = the observed independent variable, and
y = the observed dependent variable.

The equations required to carry out the calculation of the
best fit constants are complex and best handled by a computer.
It is usually desirable to run a series of expressions and
compute the residual variance for each expression to find the
simplest expression fitting the data.

8.4 Multiple Regression—Multiple regression analysis is
used when data sets involving more than one independent
variable are encountered. An expression of the following form
is desired in a multiple linear regression:

y 5 a1b1x11b2x21b3x3 and so forth (18)

where:
a, b1, b2, b3, and so forth = adjustable constants used to ob-

tain the best fit of the data set

x1, x2, x3, and so forth = the observed independent vari-
ables

y = the observed dependent
variable.

Because of the complexity of this problem, it is generally
handled with the help of a computer. One strategy is to
compute the value of all the “b’s,” together with standard
deviation for each “b.” It is usually necessary to run several
regression analysis, dropping variables, to establish the relative
importance of the independent variables under consideration.

9. Comparison of Effects—Analysis of Variance

9.1 Analysis of variance is useful to determine the effect of
a number of variables on a measured value when a small
number of discrete levels of each independent variable is
studied (5, 7, 9, 10, 11). This is best handled by using a
factorial or similar experimental design to establish the mag-
nitude of the effects associated with each variable and the
magnitude of the interactions between the variables.

9.2 The two-level factorial design experiment is an excel-
lent method for determining which variables have an effect on
the outcome.

9.2.1 Each time an additional variable is to be studied, twice
as many experiments must be performed to complete the
two-level factorial design. When many variables are involved,
the number of experiments becomes prohibitive.

9.2.2 Fractional replication can be used to reduce the
amount of testing. When this is done, the amount of informa-
tion that can be obtained from the experiment is also reduced.

9.3 In the design and analysis of interlaboratory test
programs, Practice E691 should be consulted.

10. Keywords

10.1 analysis of variance; corrosion data; curve fitting;
statistical analysis; statistical tests

APPENDIX

(Nonmandatory Information)

X1. SAMPLE CALCULATIONS

X1.1 Calculation of Variance and Standard Deviation

X1.1.1 Data—The 27 values shown in Table X1.1 are
calculated mass loss based corrosion rates for copper panels in
a one year rural atmospheric exposure.

X1.1.2 Calculation of Statistics:
X1.1.2.1 Let xi = corrosion rate of the ith panel. The average

corrosion rate of 27 panels, x̄:

x̄ 5
(xi

n
5

54.43
27

5 2.016 (X1.1)

The variance estimate based on this sample, s2(x):

s2~x! 5
(xi

2 2 nx̄2

n 2 1
5 (X1.2)

110.085 2 27 3 ~2.016! 2

26
5

0.350
26

5 0.0135

The standard deviation is:

s~x! 5 ~0.0135!1/2 5 0.116 (X1.3)

The coefficient of variation is:

0.116
2.016

3 100 5 5.75 % (X1.4)
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