INTERNATIONAL STANDARD

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION●МЕЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ●ORGANISATION INTERNATIONALE DE NORMALISATION

Plain bearings — Solid copper alloy bushes — Dimensions and tolerances

Paliers lisses — Bagues massives en alliages de cuivre — Dimensions et tolérances

First edition – 1978-11 17eh STANDARD PREVIEW (standards.iteh.ai)

ISO 4379:1978

https://standards.iteh.ai/catalog/standards/sist/0b183962-6792-4886-bed6-1859440745d3/iso-4379-1978

UDC 621.822.5:669.3

Ref. No. ISO 4379-1978 (E)

Descriptors: bearings, plain bearings, bearing bushes, copper products, specifications, dimensions, dimensional tolerances.

FOREWORD

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO member bodies). The work of developing International Standards is carried out through ISO technical committees. Every member body interested in a subject for which a technical committee has been set up has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council.

International Standard ISO 4379 was developed by Technical Committee ISO/TC 123, *Plain bearings*, and was circulated to the member bodies in December 1976. (standards.iteh.ai)

It has been approved by the member bodies of the following countries:

ISO 4379:1978

Austalia

Italityps://standards.iteh.ai/cataspa/jtandards/sist/0b183962-6792-4886-

Bulgaria

Korea, Rep. of bed6-1859 Turkev d3/iso-4379-1978

Chile

Mexico

United Kingdom

France

Netherlands

U.S.A.

Germany, F.R.

Philippines

U.S.S.R.

India

Romania

Yugoslavia

Ireland

South Africa, Rep. of

The member body of the following country expressed disapproval of the document on technical grounds:

Sweden

Plain bearings — Solid copper alloy bushes — Dimensions and tolerances

iTeh STANDARD PREVIEW (standards.iteh.ai)

1 SCOPE AND FIELD OF APPLICATION

This International Standard specifies dimensions and 19/8 tolerances applicable to solid copper alloy bushes cylinards/side/iso-diameters.

The inside diameters taken as the basic dimension for this type of bearing have been chosen to accord with known shaft sizes, and existing ISO International Standards.

Two series of outside diameters have been included in order to provide for the possibility of some of the sizes being adopted for plain bearings made from other materials, and to allow for the use of materials of differing strengths.

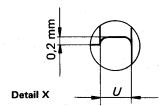
This International Standard applies to solid bushes for general uses; thicker bushes can always be specified for special applications.

2 REFERENCES

ISO/R 286, ISO system of limits and fits — Part 1 : General, tolerances and deviations.

ISO/R 468, Surface roughness.

ISO/R 775, Cylindrical and 1/10 conical shaft ends.


ISO 2340, Clevis pins — Metric series.

ISO 2341, Clevis pins with heads - Metric series.

ISO 2795, Plain bearings made from sintered material — Dimensions and tolerances.

ISO 3547, Plain bearings — Wrapped bushes — Dimensions, tolerances and methods of checking.

3 SYMBOLS

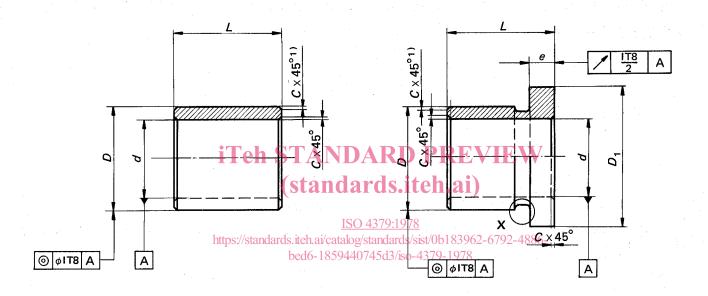


FIGURE 1 — Cylindrical bush

FIGURE 2 — Flanged bush

D = bush outside diameter

d = bush inside diameter

L = bush width

 D_1 = flange diameter

e = flange thickness

C = chamfer width

U =width of undercut

¹⁾ The chamfer on the outside surface shall be normally at 45°. Alternatively a chamfer of 15° may be provided, the details of which shall be subject to agreement between the user and the manufacturer.

4 DIMENSIONS

4.1 Cylindrical bushes

TABLE 1

Dimensions in millimetres

Inside diameter d		diameter D		Chamfer width		
	а	b		L		С
6	10	12	6	10		0,3
8	12	14	6	10		0,3
10	14	16	6	10		0,3
12	16	18	10	15	20	0,5
14	18	20	10	15	20	0,5
15	19	21	10	15	20	0,5
16	20	22	12	15	20	0,5
18	22	24	12	20	30	0,5
20	24	26	15	20	30	0,5
22	26	28	15	20	30	0,5
24*	28	30	15	20	30	0,5
25	30	32	20	30	40	0,5
27*	32	34	20	30	40	0,5
28	34	36	20	30	40	0,5
30	3 6 [e]	38	ARI20 PR	30 VV	40	0,5
32	38	40	20	30	40	0,8
33*	40	(ct42nda	rds. ²⁰ eh.	30	40	0,8
35	41	(stænda	1 US.11CII.	40	50	0,8
36*	42	46	30	40	50	0,8
38	45	48 <u>ISC</u>	4379:19308	40	50	0,8
40	1				60	0,8
42	50 nttps://stan	dards.itel?ai/catalog	30	40	60	0,8
45	53	bed 52 55 55)745d3/is3-4379-1	978 40	60	0,8
48	56	58	40	50	60	0,8
50	58	60	40	50 50	60	0,8
55	63	65	40	50 50	70	0,8
60	70	75	40	60	. 80	0,8
65	75	80	50 50	60	80	1,0
70	80	85	50 50	70	90	1,0
70 75	I .	90		70	90	
75 80	85 90	95 95	50 60	80	100	1,0 1,0
85	95	100	60 60	80 80	100	1,0
90	105	110	60 60	80 80	120	1,0
90 95	110	110	60	100	120	1,0
100	115	120	80	100	120	1,0
105	120	125	80	100	120	1,0
110	125	130	80	100	120	1,0
120	135	140	100	120	150	1,0
		150		120		1,0 2,0
130	145	1	100 100		150 180	2,0 2,0
140	155	160		150	l .	
150	165	170	120	150	180	2,0
160	180	185	120	150	180	2,0
170	190	195	120	180	200	2,0
180	200	210	150 150	180	250	2,0
190	210	220	150	180	250	2,0

^{*} These diameters are especially intended for bushes for clevis pins.

NOTE — With some materials, especially cold-drawn material, it is possible to make bushes with thinner walls. It is also agreed to make bushes with thicker walls for justified special applications.

If required, dimensions may be selected from ISO 3547.

4.2 Flanged bushes

TABLE 2

Dimensions in millimetres

Dimensions in millimetro								
Inside diameter	Outside diameter	Flange diameter	Widths		Flange thickness	Chamfer width	Width of undercut	
d	D	D_1		L		е	<i>C</i>	υ
6	12	14	6	10		3	0,3	1
8	14	18	6	10	· ·	3	0,3	1
10	16	20	6	10	1.	3	0,3	1
12	18	22	10	15	20	3	0,5	1
14	20	25	10	15	20	3	0,5	1
15	21	27	10	15	20	3	0,5	1
16	22	28	12	15	20	3	0,5	1,5
18	24	30	12	20	30	3	0,5	1,5
20	26	32	15	20	30	3	0,5	1,5
22	28	34	15	20	30	3	0,5	1,5
24*	30	36	15	20	30	3	0,5	1,5
25	32	38	20	30	40	4	0,5	1,5
27*	34	40	20	30	40	4	0,5	1,5
28	36	42	20	30	40	4	0,5	1,5
30	38	44	20	30	40	4	0,5	2
32	40	-40-		30	40	741	7 0,8	2
33*	42	l 48 eh	$S_{20}^{20}A$	L ₃₀	(D 46 K	LV ₅ LLV	0,8	2
35	45	50	20	40	50	5	0,8	2
36*	46	52	(star	dard	s.itson.	ai) š	0,8	2
38	48	54	30	40	50	5	0,8	2
40	50	58	30	40	60	5	0,8 8,0	2
42	52	60	30	ISQ ₀ 4379	:1978 ₆₀	5	0,8	2
45	55	ht 63 s://stan		atalo 40 tand	1	3962-6792-488	6- 0,8	2
48	58	66	1 49 16-18	\mathcal{L}			0,8	2
50	60	68	40	5944 0 9450.	60 60	9/8 5 5	0,8	2
55	65	73	40	50	70	5	0,8	2
60	75	83	40	60	80	7,5		2
65	80	88	50 50	60	80	•	0,8 1,0	2
70	85	95	50 50	70	90	7,5		
75	90	100	_			7,5	1,0	2
75 80	95	105	50 60	70	90	7,5	1,0	3
	l '			80	100	7,5	1,0	3
85 90	100	110	60	80	100	7,5	1,0	3
	110	120	60	80	120	10	1,0	3
95	115	125	60	100	120	10	1,0	3
100	120	130	80	100	120	10	1,0	3
105	125	135	80	100	120	10	1,0	3
110	130	140	80	100	120	10	1,0	3
120	140	150	100	120	150	10	1,0	3
130	150	160	100	120	150	10	2,0	4
140	160	170	100	150	180	. 10	2,0	4
150	170	180	120	150	180	10	2,0	4
160	185	200	120	150	180	12,5	2,0	4
170	195	210	120	180	200	12,5	2,0	4
180	210	220	150	180	250	15	2,0	4
190	220	230	150	180	250	15	2,0	4
200	230	240	180	200	250	15	2,0	4

^{*} These diameters are especially intended for bushes for clevis pins.

5 TOLERANCES

5.1 Tolerances on diameters

The tolerances on diameters of both plain and flanged bushes shall be in accordance with table 3.

TABLE 3

Inside diameter $d^{1)}$	Outside diameter D \leq 120 mm $ >$ 120 mm		Housing diameter	Flange diameter <i>D</i> ₁	
E6	s6	r6	Н7	d11	

1) The probable tolerance on *d* after fitting into the housing would normally be H8 but it depends on the design of the housing and on its material.

When the bushes are to be used in conjunction with ready-made precision ground shafts, the tolerance on the inside diameter d shall be D6, so that the probable tolerance after fitting is F8.

5.2 Coaxiality

The axis of the outside surface of the bush, to the

dimension of which the tolerance frame is connected (see figures 1 and 2), shall be contained in a cylinder of diameter IT8 coaxial with the axis of surface A. The value of IT8 shall be that which applies to the outside diameter.

5.3 Tolerance on width

The tolerance on the width L of both plain and flanged bushes shall be h13.

5.4 Flange run-out

The axial run-out of the flange shall not be greater than half of the value of IT8 applied to the flange diameter (see figure 2) during one complete revolution about the axis of surface A.

6 SURFACE FINISH

The maximum surface roughness of the inside and outside surfaces shall be $R_{\rm a}=1.6~\mu{\rm m}$.

On all other surfaces the maximum surface roughness shall be $R_a = 6.3 \mu m$.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 4379:1978 https://standards.iteh.ai/catalog/standards/sist/0b183962-6792-4886-bed6-1859440745d3/iso-4379-1978

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 4379:1978 https://standards.iteh.ai/catalog/standards/sist/0b183962-6792-4886-bed6-1859440745d3/iso-4379-1978