

Edition 2.0 2021-08

INTERNATIONAL **STANDARD**

NORME INTERNATIONALE

Metallic cables and other passive components test methods -Part 4-15: Electromagnetic compatibility (EMC) - Test method for measuring transfer impedance and screening attenuation - or coupling attenuation with triaxial cell

https://standards.iteh.ai/catalog/standards/sist/c8374e71-4b72-45c4-a3d0-Méthodes d'essais des câbles métalliques et autres composants passifs – Partie 4-15: Compatibilité électromagnétique (CEM) – Méthode d'essai pour le mesurage de l'impédance de transfert et de l'affaiblissement d'écran ou de l'affaiblissement de couplage avec cellule triaxiale

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2021 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IEC Central Office Tel.: +41 22 919 02 11

3, rue de Varembé info@iec.ch CH-1211 Geneva 20 www.iec.ch

Switzerland About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and 3 once a month by email. https://standards.iteh.ai/catalog/standards.iteh.ai/cat

IEC Customer Service Centre - webstore.iec.ch/csc8741/iec

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

IEC online collection - oc.iec.ch

Discover our powerful search engine and read freely all the publications previews. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 000 terminological entries in English and French, with equivalent terms in 18 additional languages. Also, known as the international Electrotechnical Vocabulary (IEV) online.

A propos de l'IEC

La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC

Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié.

Recherche de publications IEC - webstore.iec.ch/advsearchform

La recherche avancée permet de trouver des publications IEC en utilisant différents critères (numéro de référence, texte, comité d'études, ...). Elle donne aussi des informations sur les proiets et les publications remplacées ou retirées.

IEC Just Published - webstore.iec.ch/justpublished

Restez informé sur les nouvelles publications IEC. Just Published détaille les nouvelles publications parues. Disponible en ligne et une fois par mois par email.

Service Clients - webstore.iec.ch/csc

Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions contactez-nous: sales@iec.ch.

IEC online collection - oc.iec.ch

Découvrez notre puissant moteur de recherche et consultez gratuitement tous les aperçus des publications. Avec un abonnement, vous aurez toujours accès à un contenu à jour adapté à vos besoins.

Electropedia - www.electropedia.org

Le premier dictionnaire d'électrotechnologie en ligne au monde, avec plus de 22 000 articles terminologiques en anglais et en français, ainsi que les termes équivalents dans 16 langues additionnelles. Egalement appelé Vocabulaire Electrotechnique International (IEV) en ligne.

Edition 2.0 2021-08

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Metallic cables and other passive components test methods –
Part 4-15: Electromagnetic compatibility (EMC) – Test method for measuring transfer impedance and screening attenuation – or coupling attenuation with triaxial cell

https://standards.iteh.ai/catalog/standards/sist/c8374e71-4b72-45c4-a3d0-

Méthodes d'essais des câbles métalliques et autres composants passifs – Partie 4-15: Compatibilité électromagnétique (CEM) – Méthode d'essai pour le mesurage de l'impédance de transfert et de l'affaiblissement d'écran – ou de l'affaiblissement de couplage avec cellule triaxiale

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 33.100.10; 33.120.10 ISBN 978-2-8322-1003-2

Warning! Make sure that you obtained this publication from an authorized distributor.

Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

CONTENTS

FC	REWO	RD	5			
1	Scope7					
2	Normative references7					
3	Terms and definitions8					
4						
5 Principle of the test methods						
	5.1	General	10			
	5.2	Transfer impedance	12			
	5.3	Screening attenuation	12			
	5.4	Coupling attenuation	12			
	5.5	Tube-in-tube method	12			
6	Test	procedures	12			
	6.1	General	12			
	6.2	Triaxial cell	12			
	6.3	Cut-off frequencies, higher-order modes	13			
	6.4	Test equipment	14			
	6.5	Calibration procedure	14			
	6.6	Calibration procedure Test leads and connecting cables to the DUT REVIEW	15			
7	Samp	ole preparation(standards.iteh.ai)				
	7.1	Coaxial connector or assembly or quasi-coaxial component	15			
	7.2	Balanced or multipin connectors or components	15			
	7.3	Cable as semblies ards, itch ai/catalog/standards/sist/c8374e71-4b72-45c4-a3d0-				
	7.4	Other screened devices 9c68ec28741/iec-62153-4-15-2021	17			
8	Trans	sfer impedance (short-matched)	17			
	8.1	General	17			
	8.2	Principle block diagram of transfer impedance	17			
	8.3	Measuring procedure	18			
	8.4	Evaluation of test results	18			
	8.5	Test report	18			
9	Scree	ening attenuation	19			
	9.1	General	19			
	9.2	Impedance matching	19			
	9.3	Measuring with matched conditions	19			
	9.3.1	Procedure	19			
	9.3.2	Evaluation of test results	19			
	9.4	Measuring with mismatch	20			
	9.4.1	General	20			
	9.4.2	Evaluaton of test results	20			
	9.5	Test report	21			
10	Coup	ling attenuation	21			
	10.1	General	21			
	10.2	Procedure	21			
	10.2.	1 Coupling attenuation with balun	21			
	10.2.	2 Balunless coupling attenuation	22			
	10.3	Expression of results	22			

10.4 Test report	23
Annex A (informative) Principle of the triaxial test procedure	24
A.1 General	24
A.2 Transfer impedance	25
A.3 Screening attenuation	25
A.4 Coupling attenuation	26
Annex B (informative) Triaxial cell	28
Annex C (normative) Triaxial absorber cell	30
C.1 Cut-off frequencies, higher order modes	30
C.2 Absorber	
C.3 Influence of absorber	33
Annex D (informative) Application of a moveable shorting plane	
D.1 Coupling transfer function	34
D.2 Effect of the measurement length on the measurement cut-off frequency	
D.3 Details of the movable shorting plane	
D.4 Measurement results	37
Annex E (informative) Correction in the case that the receiver input impedance R is higher than the characteristic impedance of the outer circuit \mathbb{Z}_2	39
E.1 Impedance Z_2 lower than the input impedance of the receiver	
E.2 Correction Teh STANDARD PREVIEW	
Annex F (informative) Test adapter	41
Annex F (informative) Test adapter	42
Bibliography <u>EC.62153-4-15:2021</u>	
https://standards.iteh.ai/catalog/standards/sist/c8374e71-4b72-45c4-a3d0-	
Figure 2 – Principle depiction of the triaxial test setup (tube) to measure transfer	
impedance and screening attenuation with tube in tube in accordance with IEC 62153-4-7	11
Figure 3 – Principle depiction of the triaxial cell to measure transfer impedance and screening attenuation of connectors or assemblies with tube in tube in accordance with IEC 62153-4-7	11
Figure 4 – Rectangular waveguide	
Figure 5 – Preparation of balanced or multipin connectors for transfer impedance and screening attenuation	
Figure 6 – Preparation of balanced or multipin connectors for coupling attenuation measurement	
Figure 7 – Test setup (principle) for transfer impedance measurement in accordance with test method B of IEC 62153-4-3	17
Figure 8 – Principle test setup for balunless coupling attenuation measurement according to IEC 62153-4-9	22
Figure A.1 – Principle test setup to measure transfer impedance and screening attenuation	24
Figure A.2 – Equivalent circuit of the principle of the test setup in Figure A.1	25
Figure A.3 – Coupling attenuation, principle of test setup with balun and standard tube	
Figure A.4 – Coupling attenuation, principle of setup with multiport VNA and standard head	
Figure B.1 – Principle depiction of the triaxial cell to measure transfer impedance and screening attenuation on a connector with tube-in-tube according to IEC 62153-4-7	28

Figure B.2 – Examples of different designs of triaxial cells	29
Figure C.1 – Cavity or rectangular waveguide	30
Figure C.2 – Comparison of the measurements of a RG 214 cable with 40 mm tube and triaxial cells	31
Figure C.3 – Principle of the triaxial cell with tube in tube and ferrite tiles as absorber	31
Figure C.4 – Comparison of the measurements of an RG 214 with 40 mm tube and triaxial cells with magnetic absorber	32
Figure C.5 – Examples of magnetic flat absorber	32
Figure C.6 – Setup for correction measurement	33
Figure C.7 – Correction measurement	33
Figure D.1 – Measured coupling transfer function of a braided screen versus frequency with the triaxial cell	34
Figure D.2 – Cross-section of triaxial cell with movable shorting plane	36
Figure D.3 – Crosscut of plane shortening housing and tube-in-tube	36
Figure D.4 – Detail H of Figure D.3: contact between plane and housing	37
Figure D.5 – Detail G of Figure D.3: contact between plane and tube-in-tube	37
Figure D.6 – Compilation of transfer impedance test results with different shorting plane distances	38
Figure E.1 – Example of forward transfer scattering parameter S_{21} for different impedances in the outer circuit where the receiver input impedance is 50 Ω	39
Figure E.2 – DUT with uniform cylindrical shape in the centre of the cell	
Figure F.1 – Principle of the test setup to measure transfer impedance and screening or coupling attenuation of connectors.	
Figure F.2 – Principlesof the test setup to measure transfer/impedance and screening attenuation on a cable assembly 19c68ec28741/iec-62153-4-15-2021	
Figure G.1 – Measurement with HP8753D of S_{21} of a 3 dB attenuator	42
Figure G.2 – Measurement with ZVRE of S_{21} of a 3 dB attenuator	43
Table 1 – IEC 62153-4 series, Metallic communication cable test methods – Test	10

INTERNATIONAL ELECTROTECHNICAL COMMISSION

METALLIC CABLES AND OTHER PASSIVE COMPONENTS TEST METHODS –

Part 4-15: Electromagnetic compatibility (EMC) – Test method for measuring transfer impedance and screening attenuation – or coupling attenuation with triaxial cell

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. TANDARD PREVIEW
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity. CEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62153-4-15 has been prepared by IEC technical committee 46: Cables, wires, waveguides, R.F. connectors, R.F. and microwave passive components and accessories.

This second edition cancels and replaces the first edition published in 2015. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) measurement of coupling attenuation of balanced connectors, assemblies and components with balun and balunless added;
- b) application of a test adapter was added;
- c) application of a moveable shorting plane;

- d) application of the triaxial "absorber" cell;
- e) correction of test results in the case that the receiver input impedance R is higher than the characteristic impedance of the outer circuit Z_2 .

The text of this International Standard is based on the following documents:

FDIS	Report on voting
46/814/FDIS	46/822/RVD

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/standardsdev/publications.

A list of all the parts in the IEC 62153-4 series, published under the general title *Metallic communication cable test methods* – *Electromagnetic compatibility (EMC)*, can be found on the IEC website.

iTeh STANDARD PREVIEW

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the **EC website under webstoreliec.ch** in the data related to the specific document. At this date, the document will be

IEC 62153-4-15:2021

• reconfirmed, https://standards.iteh.ai/catalog/standards/sist/c8374e71-4b72-45c4-a3d0-

• withdrawn, 19c68ec28741/iec-62153-4-15-2021

- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

METALLIC CABLES AND OTHER PASSIVE COMPONENTS TEST METHODS -

Part 4-15: Electromagnetic compatibility (EMC) – Test method for measuring transfer impedance and screening attenuation or coupling attenuation with triaxial cell

Scope

This part of IEC 62153 specifies the procedures for measuring with triaxial cell the transfer impedance, screening attenuation or the coupling attenuation of connectors, cable assemblies and components, for example accessories for analogue and digital transmission systems, and equipment for communication networks and cabling.

Measurements can be achieved by applying the device under test directly to the triaxial cell or with the tube-in-tube method in accordance with IEC 62153-4-7.

Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 62153-4-15:2021

IEC 61196-1, Coaxial communication cables rds part 71:7 Generic specification - General, 19c68ec28741/iec-62153-4-15-202 definitions and requirements

IEC TS 62153-4-1:2014, Metallic communication cable test methods – Part 4-1: Electromagnetic Compatibility (EMC) - Introduction to electromagnetic screening measurements

IEC 62153-4-3, Metallic communication cable test methods - Part 4-3: Electromagnetic compatibility (EMC) - Surface transfer impedance - Triaxial method

IEC 62153-4-4:2015, Metallic communication cable test methods – Part 4-4: Electromagnetic compatibility (EMC) - Test method for measuring of the screening attenuation as up to and above 3 GHz. triaxial method

IEC 62153-4-7, Metallic communication cable test methods - Part 4-7: Electromagnetic compatibility (EMC) – Test method for measuring the transfer impedance Z_T and the screening attenuation as or coupling attenuation ac of connectors and assemblies up to and above 3 GHz - Triaxial Tube in tube method

IEC 62153-4-8, Metallic cables and other passive components – Test methods – Part 4-8: Electromagnetic compatibility (EMC) - Capacitive coupling admittance

IEC 62153-4-9:2018, Metallic communication cable test methods – Part 4-9: Electromagnetic compatibility (EMC) - Coupling attenuation of screened balanced cables, triaxial method

IEC 62153-4-10, Metallic communication cable test methods - Part 4-10: Electromagnetic compatibility (EMC) - Transfer impedance and screening attenuation of feed-throughs and electromagnetic gaskets - Double coaxial test method

IEC 62153-4-16, Metallic communication cable test methods – Part 4-16: Electromagnetic compatibility (EMC) – Extension of the frequency range to higher frequencies for transfer impedance and to lower frequencies for screening attenuation measurements using the triaxial set-up

3 Terms and definitions

For the purposes of this document, the terms and definitions given in IEC 61196-1 and the following apply.

3.1

triaxial cell

rectangular housing in analogy to the principles of the triaxial test procedure, consisting of a non-ferromagnetic metallic material

Note 1 to entry: The triaxial test procedure is described in IEC 62153-4-3 and IEC 62153-4-4.

3.2

surface transfer impedance

 Z_{T}

for an electrically short screen, quotient of the longitudinal voltage U_1 induced to the inner circuit by the current I_2 fed into the outer circuit or vice versa [Ω] (see Figure 1)

Note 1 to entry: The value Z_{τ} of an electrically short screen is expressed in ohms $[\Omega]$ or decibels in relation to 1 Ω .

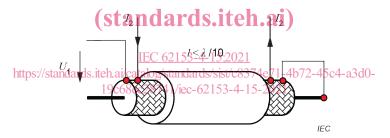


Figure 1 – Definition of Z_T

$$Z_{\mathsf{T}} = \frac{U_{\mathsf{1}}}{I_{\mathsf{2}}} \tag{1}$$

$$Z_{\mathsf{T}} \mathsf{dB}(\Omega) = 20 \cdot \mathsf{lg}\left(\frac{|Z_{\mathsf{T}}|}{1\Omega}\right)$$
 (2)

3.3

effective transfer impedance

 Z_{TF}

impedance defined as:

$$Z_{\mathsf{TE}} = \mathsf{max} \big| Z_{\mathsf{F}} \pm Z_{\mathsf{T}} \big| \tag{3}$$

where Z_F is the capacitive coupling impedance

3.4

screening attenuation

 a_{s}

for electrically long devices, i.e. above the cut-off frequency, logarithmic ratio of the feeding power P_1 and the periodic maximum values of the coupled power $P_{r,max}$ in the outer circuit

$$a_{\rm S} = 10 \cdot \lg \left(\text{Env} \left| \frac{P_{\rm l}}{P_{\rm r,max}} \right| \right)$$
 (4)

Note 1 to entry: The screening attenuation of an electrically short device is defined as:

$$a_{\rm S} = 20 \cdot \lg \frac{150\Omega}{Z_{\rm TF}} \tag{5}$$

where

150 Ω is the standardised impedance of the outer circuit.

3.5

coupling attenuation

 a_{c}

for a screened balanced device, sum of the unbalance attenuation $a_{\rm u}$ of the symmetric pair and the screening attenuation $a_{\rm s}$ of the screen of the device under test.

Note 1 to entry: For electrically long devices, i.e. above the cut-off frequency, the coupling attenuation a_c is defined as the logarithmic ratio of the feeding power P_1 and the periodic maximum values of the coupled power $P_{r,\text{max}}$ in the outer circuit.

https://standards.iteh.ai/catalog/standards/sist/c8374e71-4b72-45c4-a3d0-

3.6

19c68ec28741/iec-62153-4-15-2021

coupling length

length of cable that is inside the test jig, i.e. the length of the screen under test

Note 1 to entry: The coupling length is electrically short, if

$$\frac{\lambda_{\rm o}}{L} > 10 \cdot \sqrt{\varepsilon_{\rm r1}} \qquad \text{or} \qquad f < \frac{c_{\rm o}}{10 \cdot L \cdot \sqrt{\varepsilon_{\rm r1}}}$$
 (6)

or electrically long, if

$$\frac{\lambda_{0}}{L} \leq 2 \cdot \left| \sqrt{\varepsilon_{r1}} - \sqrt{\varepsilon_{r2}} \right| \quad \text{or} \quad f > \frac{c_{0}}{2 \cdot L \cdot \left| \sqrt{\varepsilon_{r1}} - \sqrt{\varepsilon_{r2}} \right|}$$
(7)

where

L is the effective coupling length, in m;

 λ_0 is the free space wavelength, in m;

 $\varepsilon_{\rm r1}$ $\,$ is the resulting relative permittivity of the dielectric of the cable;

 $\varepsilon_{\rm r2}$ $\,$ is the resulting relative permittivity of the dielectric of the secondary circuit;

f is the frequency, in Hz;

 c_0 is the velocity of light in free space, in m/s.

3.7 device under test DUT

connector with mating connector and attached connecting cables or cable assembly consisting of the assembly with their attached mated connectors and with connecting cables

4 Physical background

See IEC TS 62153-4-1, IEC 62153-4-3, IEC 62153-4-4, and Annex A to Annex F.

5 Principle of the test methods

5.1 General

The IEC 62153-4 series describes different test procedures to measure screening effectiveness on communication cables, connectors and components.

Table 1 gives an overview of the test procedures of the IEC 62153-4 series carried out with the triaxial test setup.

Table 1 – IEC 62153-4 series, Metallic communication cable test methods –

Test procedures with triaxial test setup

Tob STANDADD DDEVIEW				
IEC 62153-4 series	Metallic communication cable test methods – Electromagnetic compatibility (EMC)			
IEC TS 62153-4-1	Introduction to electromagnetic screening measurements			
IEC 62153-4-3	Surface transfer impedance 53Triaxial method			
IEC 62153-4-4 http	Shielded screening attenuation test method for measuring of the screening attenuation $a_{\rm S}$ up to and above 3 GHz $_{\rm I/iec}$ -62153-4-15-2021			
IEC 62153-4-7	Shielded screening attenuation test method for measuring the Transfer impedance Z_{T} and the screening attenuation a_{S} or the coupling attenuation a_{C} of RF-connectors and assemblies up to and above 3 GHz, tube in tube method			
IEC 62153-4-9	Coupling attenuation of screened balanced cables, triaxial method			
IEC 62153-4-10	Shielded screening attenuation test method for measuring the screening effectiveness of feedtroughs and electromagnetic gaskets double coaxial method			
IEC 62153-4-15	Test method for measuring transfer impedance and screening attenuation – or coupling attenuation with triaxial cell			
IEC 62153-4-16	Extension of the frequency range to higher frequencies for transfer impedance and to lower frequencies for screening attenuation measurements using the triaxial setup			

Larger connectors, cable assemblies, and components do not fit into the commercially available test rigs (tubes) of the triaxial test procedures of IEC 62153-4-3, IEC 62153-4-4, and IEC 62153-4-7, respectively, which were designed originally to measure transfer impedance and screening attenuation on communication cables, connectors, and assemblies.

Since rectangular housings with RF-tight caps are easier to manufacture than tubes, the "triaxial cell" was designed to test larger devices, such as connectors, assemblies and components. The principles of the triaxial test procedures in accordance with IEC 62153-4-3, IEC 62153-4-4 and IEC 62153-4-7 can be transferred to rectangular housings. Tubes and rectangular housings may be operated in combination in one test setup (see Figure 2 and Figure 3).

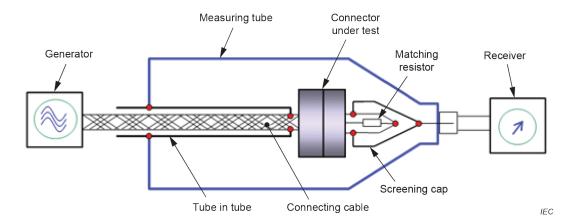


Figure 2 – Principle depiction of the triaxial test setup (tube) to measure transfer impedance and screening attenuation with tube in tube in accordance with IEC 62153-4-7

In principle, the triaxial cell can be used in accordance with all triaxial procedures of Table 1, where originally a cylindrical tube is used. The screening effectiveness of connectors, assemblies or other components can be measured, in principle, in the tube as well as in the triaxial cell. Test results of measurements with tubes and with triaxial cells correspond well.

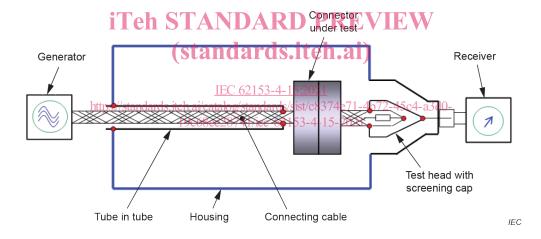


Figure 3 – Principle depiction of the triaxial cell to measure transfer impedance and screening attenuation of connectors or assemblies with tube in tube in accordance with IEC 62153-4-7

The triaxial cell test setup is based on the triaxial system in accordance with IEC 62153-4-3 and IEC 62153-4-4, consisting of the DUT, a solid metallic housing and an RF-tight extension tube (optional). The matched device under test (DUT), which is fed by a generator via a connecting cable, forms the disturbing circuit, which may also be designated as the inner or the primary circuit.

The disturbed circuit, which may also be designated as the outer or the second circuit, is formed by the outer conductor of the device under test, connected to the connecting cable (or the tube in tube, if applicable) and a solid metallic housing or cell having the DUT in its axis.

5.2 Transfer impedance

The test determines the screening effectiveness of a shielded device by applying a well-defined current and voltage to the screen of the cable, the assembly or the device under test and measuring the induced voltage in the secondary circuit in order to determine the surface transfer impedance. This test measures only the galvanic and magnetic components of the transfer impedance. To measure the electrostatic component (the capacitance coupling impedance), the method described in IEC 62153-4-8 shall be used.

The triaxial method for the measurement of the transfer impedance is in general suitable in the frequency range up to 30 MHz for a 1 m sample length and 100 MHz for a 0,3 m sample length, which corresponds to an electrical length less than 1/6 of the wavelength in the sample. A detailed description can be found in Clause 9 of IEC TS 62153-4-1:2014 as well as in IEC 62153-4-3.

5.3 Screening attenuation

The disturbing (or primary) circuit is the matched cable, assembly or component under test. The disturbed (or secondary) circuit consists of the outer conductor (or the outermost layer in the case of multiscreen cables or devices) of the cable, or the assembly or the device under test and a solid metallic housing, having the device under test in its axis (see Figure 3).

The voltage peaks at the far end of the secondary circuit have to be measured. The near end of the secondary circuit is short-circuited. For this measurement, a matched receiver is not necessary. The expected voltage peaks at the far end are not dependent on the input impedance of the receiver, provided that it is lower than the characteristic impedance of the secondary circuit. However, it is an advantage to have a low mismatch, for example, by selecting housings of an appropriate size. A detailed description can be found in Clause 10 of IEC TS 62153-4-1:2014, as well as in IEC 62153-4-4.

IEC 62153-4-15:2021

5.4 Coupling attenuation ds.iteh.ai/catalog/standards/sist/c8374e71-4b72-45c4-a3d0-19c68ec28741/iec-62153-4-15-2021

The coupling attenuation of screened balanced pairs describes the global effect against electromagnetic interference (EMI) and takes into account the screening attenuation of the screen and the unbalance attenuation of the pair. A detailed description of coupling attenuation can be found in IEC 62153-4-9.

5.5 Tube-in-tube method

If required, measurements in accordance with IEC 62153-4-7 can also be achieved in the triaxial cell, using the triaxial cell instead of the tube fixture (see Figure 2 and Figure 3).

6 Test procedures

6.1 General

The measurements shall be carried out at the temperature of (23 ± 3) °C. The test method determines the transfer impedance and the screening or the coupling attenuation of a DUT by measuring in a triaxial test setup in accordance with IEC 62153-4-3 and IEC 62153-4-4.

6.2 Triaxial cell

The triaxial cell consists of a rectangular housing in analogy to the principles of the triaxial test procedures in accordance with IEC 62153-4-3 and IEC 62153-4-4. The material of the housing shall be of non-ferromagnetic metallic material. The length of the housing should be preferably 1 m.

Reflections of the transmitted signal can occur (in the outer circuit) owing to the deviation of the characteristic impedances. The plane of the short circuit at the near end (generator side) should be therefore preferably directly on the wall of the housing.

At the receiver side, the transition of the housing to the coaxial system impedance (50 Ω -system) should be also directly on the wall of the housing.

6.3 Cut-off frequencies, higher-order modes

The triaxial test procedure uses the principle of transverse electromagnetic wave propagation (TEM – waves). At higher frequencies, the triaxial cell becomes in principle a cavity resonator, or a rectangular waveguide, which exhibits resonances depending on its dimensions; see Figure 4.

Above these resonance frequencies, propagation of TEM waves is disturbed and measurements of screening attenuation with triaxial test method are limited.

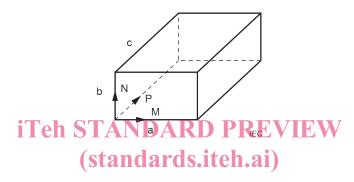


Figure 4 Rectangular waveguide

https://standards.iteh.ai/catalog/standards/sist/c8374e71-4b72-45c4-a3d0-

The cut-off frequency f_c of a rectangular cavity resonator is given by:

$$f_c = \frac{c_0}{2a} \tag{8}$$

For a rectangular cavity resonator, the resonance frequencies can be calculated using Equation (9). For this calculation, one of the parameters M, N, P can be set to zero.

$$f_{MNP} = \frac{c_0}{2} \sqrt{\left(\frac{M}{a}\right)^2 + \left(\frac{N}{b}\right)^2 + \left(\frac{P}{c}\right)^2} \tag{9}$$

where

M, N are the number of modes (even, 2 of 3 > 0);

a,b,c are the dimensions of the cavity;

 c_0 is the velocity of light in free space.

NOTE Conductive parts inside the cavity resonator or a poor centring of the DUT in the triaxial cell can lead to deviating resonance frequencies or to muting them.

Measurements of screening attenuation can be achieved up to the first cut-off frequency (M, N = 1).

The frequency range of the triaxial cell can be extended up to and above 3 GHz by using absorber material placed on the bottom of the cell, see Annex C.