
Designation: E2807 − 11 (Reapproved 2019)

Standard Specification for
3D Imaging Data Exchange, Version 1.01

This standard is issued under the fixed designation E2807; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This specification describes a data file exchange format
for three-dimensional (3D) imaging data, known as the ASTM
E57 3D file format, Version 1.0. The term “E57 file” will be
used as shorthand for “ASTM E57 3D file format” hereafter.

1.2 An E57 file is capable of storing 3D point data, such as
that produced by a 3D imaging system, attributes associated
with 3D point data, such as color or intensity, and 2D imagery,
such as digital photographs obtained by a 3D imaging system.
Furthermore, the standard defines an extension mechanism to
address future aspects of 3D imaging.

1.3 This specification describes all data that will be stored in
the file. The file is a combination of binary and eXtensible
Markup Language (XML) formats and is fully documented in
this specification.

1.4 All quantities standardized in this specification are
expressed in terms of SI units. No other units of measurement
are included in this standard.

1.4.1 Discussion—Planar angles are specified in radians,
which are considered a supplementary SI unit.

1.5 This standard does not purport to address all of the
safety concerns, if any, associated with its use. It is the
responsibility of the user of this standard to establish appro-
priate safety, health, and environmental practices and deter-
mine the applicability of regulatory limitations prior to use.

1.6 This standard does not purport to address legal
concerns, if any, associated with its use. It is the responsibility
of the user of this standard to comply with appropriate
regulatory limitations prior to use.

1.7 This international standard was developed in accor-
dance with internationally recognized principles on standard-
ization established in the Decision on Principles for the
Development of International Standards, Guides and Recom-
mendations issued by the World Trade Organization Technical
Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:2

E2544 Terminology for Three-Dimensional (3D) Imaging
Systems

2.2 IEEE Standard:3

754-1985 IEEE Standard for Binary Floating-Point Arithme-
tic

2.3 IETF Standard:4

RFC 3720 Internet Small Computer Systems Interface
(iSCSI)

2.4 W3C Standard:5

XML Schema Part 2: Datatypes Second Edition

3. Terminology

3.1 Definitions—Terminology used in this specification con-
forms to the definitions included in Terminology E2544.

3.2 Definitions of Terms Specific to This Standard:
3.2.1 backward compatibility, n—ability of a file reader to

understand a file created by a writer of an older version of a file
format standard.

3.2.2 byte, n—grouping of 8 bits, also known as an octet.

3.2.3 camel case, n—naming convention in which com-
pound words are joined without spaces with each word’s initial
letter capitalized within the component and the first letter is
either upper or lowercase.

3.2.4 camera image, n—regular, rectangular grid of values
that stores data from a 2D imaging system, such as a camera.

3.2.5 camera projection model, n—mathematical formula
used to convert between 3D coordinates and pixels in a camera
image.

3.2.6 file offset, n—see physical file offset.

1 This specification is under the jurisdiction of ASTM Committee E57 on 3D
Imaging Systems and is the direct responsibility of Subcommittee E57.11 on Data
Interoperability.

Current edition approved March 1, 2019. Published March 2019. Originally
approved in 2011. Last previous edition approved in 2011 as E2807 – 11. DOI:
10.1520/E2807-11R19.

2 For referenced ASTM standards, visit the ASTM website, www.astm.org, or
contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM
Standards volume information, refer to the standard’s Document Summary page on
the ASTM website.

3 For referenced IEEE standards, visit http://grouper.ieee.org/groups/754.
4 For referenced Internet Engineering Task Force (IETF) standards, visit the

IETF website, www.ietf.org.
5 String representations (the lexical space) of the numeric datatypes are docu-

mented in the W3C standard: “XML Schema Part 2: Datatypes Second Edition”,
available on the website http://www.w3.org/TR/xmlschema-2/.

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States

NOTICE: This standard has either been superseded and replaced by a new version or withdrawn.
Contact ASTM International (www.astm.org) for the latest information

1

iTeh Standards
(https://standards.iteh.ai)

Document Preview
ASTM E2807-11(2019)

https://standards.iteh.ai/catalog/standards/sist/caf27dc9-6231-4be5-8591-65e403465963/astm-e2807-112019

https://doi.org/10.1520/E2544
https://doi.org/10.1520/E2544
http://www.astm.org/COMMIT/COMMITTEE/E57.htm
http://www.astm.org/COMMIT/SUBCOMMIT/E5711.htm
https://standards.iteh.ai/catalog/standards/sist/caf27dc9-6231-4be5-8591-65e403465963/astm-e2807-112019

3.2.7 file-level coordinate system, n—coordinate system
common to all 2D and 3D data sets in a given E57 file.

3.2.8 forward compatibility, n—ability of a file reader to
read a file that conforms to a newer version of a format
specification than it was designed to read, specifically having
the capability to understand those aspects of the file that were
defined in the version it was designed to read, while ignoring
those portions that were defined in later versions of the format
specification.

3.2.9 logical length, n—number of bytes used to describe
some entity in an E57 file, not including CRC checksum bytes.

3.2.10 physical file offset, n—number of bytes preceding the
specified byte location in an E57 file, counting payload bytes
and checksums.

3.2.10.1 Discussion—This term is also known as the file
offset.

3.2.11 physical length, n—number of bytes used to describe
some entity in an E57 file, including CRC checksum bytes.

3.2.12 record, n—single collection in a sequence of
identically-typed collections of elements.

3.2.13 rigid body transform, n—type of coordinate trans-
form that preserves distances between all pairs of points that
furthermore does not admit a reflection.

3.2.13.1 Discussion—A rigid body transform can be used,
for example, to convert points from the local coordinates of a
3D data set (for example, a single laser scan) to a common
coordinate system shared by multiple 3D data sets (for
example, a set of laser scans).

3.2.14 XML namespace, n—method for qualifying element
names in XML to prevent the ambiguity of multiple elements
with the same name.

3.2.14.1 Discussion—XML namespaces are used in an E57
file to support the definition of extensions.

3.2.15 XML whitespace, n—sequence of one or more of the
following Unicode characters: the space character (20
hexadecimal), the carriage return (0D hexadecimal), line feed
(0A hexadecimal), or tab (09 hexadecimal).

3.2.16 zero padding, n—one or more zero-valued bytes
appended to the end of a sequence of bytes.

4. Acronyms

4.1 ASCII—American Standard Code for Information Inter-
change

4.2 CRC—Cyclic redundancy check

4.3 GUID—Globally unique identifier

4.4 IEEE—Institute of Electrical and Electronics Engineers

4.5 IETF—Internet Engineering Task Force

4.6 iSCSI—Internet small computer system interface

4.7 JPEG—Joint Photographic Experts Group

4.8 PNG—Portable network graphics

4.9 URI—Uniform resource identifier

4.10 UTC—Coordinated universal time

4.11 UTF—Unicode Transformation Format

4.12 W3C—WorldWide Web Consortium

4.13 XML—eXtensible Markup Language

5. Notation and Mathematical Concepts

5.1 The following notation and established mathematical
concepts are used in this specification.

5.2 Intervals:
5.2.1 A closed interval is denoted [a, b], where a ≤ b. A

closed interval includes the endpoints a and b and all numbers
in between. An open interval is denoted (a, b), where a ≤ b. An
open interval includes the numbers between the endpoints a
and b, but does not include the endpoints themselves. The
half-open intervals (a, b] and [a, b) do not include the a and b
endpoints, respectively.

5.3 Cartesian Coordinate System:
5.3.1 Points in Cartesian coordinates are represented by an

ordered triplet (x, y, z), where x, y, and z are coordinates along
the X, Y, and Z axes, respectively. The coordinate system is
right-handed.

5.4 Cylindrical Coordinate System:
5.4.1 Points in cylindrical coordinates are represented by an

ordered triplet (ρ, θ, z), where ρ is the radial distance (in
meters), θ is the azimuth angle (in radians), and z is the height
(in meters).

5.4.1.1 The azimuth angle is measured as the counterclock-
wise rotation of the positive X-axis about the positive Z-axis of
a Cartesian reference frame.

5.4.2 The following restrictions on cylindrical coordinates
are applied:

ρ $ 0 (1)

2π,θ # π (2)

5.4.3 The conversion from Cartesian to cylindrical coordi-
nates is accomplished through the formulas (note that the z
coordinate is the same in both systems):

ρ 5 =~x21y2! (3)

θ 5 atan2~y ,x! (4)

5.4.3.1 The function “atan2(y, x)” is defined as the function
returning the arc tangent of y/x, in the range (–π, +π] radians.
The signs of the arguments are used to determine the quadrant
of the result.

5.4.3.2 In degenerate cases, the following convention is
observed:

If x = y = 0, then θ = 0.
5.4.4 Conversely, cylindrical coordinates can be converted

to Cartesian coordinates using the formulas:

x 5 ρ cos~θ! (5)

y 5 ρ sin~θ! (6)

5.5 Spherical Coordinate System:
5.5.1 Points in spherical coordinates are represented by an

ordered triplet (r, θ, φ), where r is the range (in meters), θ is the
azimuth angle (in radians), and φ is the elevation angle (in
radians).

5.5.2 The following restrictions on spherical coordinates are
applied:

E2807 − 11 (2019)

2

iTeh Standards
(https://standards.iteh.ai)

Document Preview
ASTM E2807-11(2019)

https://standards.iteh.ai/catalog/standards/sist/caf27dc9-6231-4be5-8591-65e403465963/astm-e2807-112019

https://standards.iteh.ai/catalog/standards/sist/caf27dc9-6231-4be5-8591-65e403465963/astm-e2807-112019

r $ 0 (7)

2π,θ # π (8)

2
π
2

φ
π
2

(9)

5.5.3 The conversion from spherical to Cartesian coordi-
nates is accomplished through the formulas:

x 5 r cos~φ!cos~θ! (10)

y 5 r cos~φ!sin~θ! (11)

z 5 r sin~φ! (12)

5.5.4 Conversely, in non-degenerate cases, Cartesian coor-
dinates can be converted to spherical coordinates via the
formulas:

r 5 =~x21y21z2! (13)

θ 5 atan2~y ,x! (14)

φ 5 arcsinS z
r D (15)

5.5.4.1 In degenerate cases, the following conventions are
observed:

If x = y = 0, then θ = 0;
If x = y = z = 0, then both θ = 0 and φ = 0.
5.5.5 Discussion—The elevation is measured with respect to

the XY-plane, with positive elevations towards the positive
Z-axis. The azimuth is measured as the counterclockwise
rotation of the positive X-axis about the positive Z-axis. This
definition of azimuth follows typical engineering usage. Note
that this differs from traditional use in navigation or surveying.

5.6 Quaternions:
5.6.1 A quaternion is a generalized complex number. A

quaternion, q, is represented by an ordered four-tuple (w,x,y,z),
where q = w + xi + yj + zk. The coordinate w defines the scalar
part of the quaternion, and the coordinates (x, y, z) define the
vector part.

5.6.2 The norm of a quaternion, || q ||, is defined as:

|| q || 5 =w21x21y21z2.

5.6.3 A unit quaternion, q, has the further restriction that its
norm || q || = 1.

5.6.4 Rotation of a point p by a unit quaternion q is given by
the matrix formula:

p ' 5 Rp (16)

where:

R 5 F w21x2 2 y2 2 z2

2~xy1wz!
2~xz 2 wy!

2~xy 2 wz!
w21y2 2 x2 2 z2

2~yz1wx!

2~xz1wy!

2~yz 2 wx!

w21z2 2 x2 2 y2
G

(17)

5.6.5 Discussion—Unit quaternions are used in this standard
to represent rotations in rigid body transforms.

5.7 Rigid Body Transforms:
5.7.1 A rigid body transform converts points from one

coordinate reference frame to another, preserving distances
between pairs of points and, furthermore, not admitting a

reflection. A rigid body transform can be represented as a
3 × 3 rotation matrix R and a translation 3-vector t.

5.7.2 A 3D point is transformed from the source coordinate
system to the destination coordinate system by first applying
the rotation and then the translation. More formally, the
transformation operation T(.) of a point p is defined as:

p ' 5 T~p! 5 Rp1t (18)

The rotation matrix R can be computed from a unit quater-
nion q using Eq 17.

5.7.3 Discussion—Rigid body transforms are used in this
standard to support the transformation of data represented in a
local coordinate system, such as the coordinate system of a
sensor used to acquire a 3D data set, to a common file-level
coordinate system shared by all 3D data sets.

5.8 Trees:
5.8.1 A tree is data structure that represents an acyclic

graph. A tree consists of nodes, which store some information,
and edges (also known as arcs) that connect the nodes. The
single topmost node is called the root node. A node may have
zero or more nodes connected below it, which are called child
nodes. Each node, except the root node, has exactly one node
connected above it, which is called the parent node. Nodes with
no children are called leaf nodes. A descendant is a direct or
indirect child of a given node.

5.8.2 Discussion—Trees are used in this standard to de-
scribe the structure of XML data, as well as index data in
binary sections.

5.9 XML Elements and Attributes:
5.9.1 An XML element is the fundamental building block of

an XML file. An element consists of a start tag, optional
attributes, optional child elements, optional child text, and an
end tag. Element names in an E57 file are case sensitive.
Element names in this specification are written in camel case
with a lowercase initial character. Type names in this specifi-
cation are written in camel case with an upper case initial
character.

5.9.2 Discussion—See Fig. 1 for an excerpt of XML that
illustrates the parts of an XML element.

5.9.3 XML elements that have child elements form a tree,
with each element being a node.

5.9.4 A pathname is a string that specifies the sequence of
elements names that are encountered when traversing from a
given origin element to a destination element in an XML tree.
In this standard, pathnames are only defined for destination
elements that are descendants of the origin element. A relative
pathname is formed by concatenating the sequence of element
names traversed using the forward slash (“/”) as a separator.
Each successive element in the sequence shall be a child of the
previous element. Note that the element name of the origin
element does not appear in the pathname. An absolute path-
name has an origin that is the root element of the tree, and is
formed by prepending a forward slash to the relative pathname.

5.9.5 Discussion—As an example, consider a hypothetical
E57 file consisting of a root element named e57Root which
contains a child element named data3D, which contains a
child element named 0, which contains a child element named
pose, which contains a child element named translation

E2807 − 11 (2019)

3

iTeh Standards
(https://standards.iteh.ai)

Document Preview
ASTM E2807-11(2019)

https://standards.iteh.ai/catalog/standards/sist/caf27dc9-6231-4be5-8591-65e403465963/astm-e2807-112019

https://standards.iteh.ai/catalog/standards/sist/caf27dc9-6231-4be5-8591-65e403465963/astm-e2807-112019

, which contains a child element named x. Then the absolute
pathname of the x element is “/data3D/0/pose/
translation/x”, and the relative pathname of the x
element relative to the pose element is “translation/x”.

6. General File Structure

6.1 E57 files shall use the filename extension “.e57” (note
lowercase e).

6.2 This specification defines a binary file format composed
of a sequence of pages.

6.2.1 Each page shall be composed of 1020 bytes of data
(known as the payload) followed by a 32-bit cyclic redundancy
check (CRC) checksum computed on the preceding payload.

6.2.2 The length of an E57 file shall be an integral multiple
of 1024 bytes. Any unused bytes in the payload of the final
page in a file shall be filled with 0 values.

6.2.3 The CRC checksum shall be computed on the 1020
bytes of data using the iSCSI polynomial CRC32C (CRC
32-bit Castagnioli) as documented in IETF RFC 3720, Section
12.1 (http://tools.ietf.org/html/rfc3720).

6.2.4 Discussion—Sequences of data without the CRC
checksum bytes are known as logical sequences, while se-
quences of data with the CRC checksum bytes included are
known as physical sequences. All sequences of characters (in
XML section) or bytes (in binary sections) described in this
standard are logical sequences. The physical sequence repre-
sentation of a logical sequence may have an intervening
checksum if the logical sequence crosses a page boundary.
Page boundaries occur every 1020 bytes of logical data.

6.3 An E57 file shall be composed of two or more sections
in the following order:

6.3.1 File header section (required, see Section 7),
6.3.2 Binary sections (optional, see Section 9), and

6.3.3 XML section (required, see Section 8).

6.4 Binary portions (including the header and binary sec-
tions) of an E57 file are encoded using the little-endian byte
order.

7. File Header Section

7.1 The file header section begins at file offset 0.

7.2 The file header section is 48 bytes in length, with the
format given in Table 1.

8. XML Section

8.1 The XML section of the file describes the data hierarchy.
The data hierarchy contains a set of XML elements in a specific
format, and arbitrary XML is not allowed. The elements are
built upon a set of fundamental data types: Integer,
ScaledInteger, Float, String, Structure, Blob, Vector, and Com-
pressedVector. Additional composite data types are defined in
the standard or can be defined by an extension to the standard.

8.2 The XML section of the E57 file contains a single
well-formed XML 1.0 document using UTF-8 encoding.
However, arbitrary XML is not allowed. The elements in the
XML section shall be E57 elements, which are XML elements
of a specific format, as will be described in 8.3. Furthermore,
the elements shall follow particular grammatical rules, which
are described in 8.4.

8.3 E57 Element Data Types:
8.3.1 The E57 file format supports eight fundamental E57

element data types—five terminal types and three non-terminal
types. Non-terminal types are composed of other non-terminal
or terminal types to an arbitrary, but finite, level of nesting.
Terminal types shall not contain any child E57 elements. The
terminal types are Integer, ScaledInteger, Float, String, and

FIG. 1 XML Elements and Attributes

TABLE 1 Format of the E57 File Header Section

Bytes Field name Data type Description

1-8 fileSignature 8-bit characters The file type signature. Shall contain the ASCII characters “ASTM-E57”.
9-12 versionMajor Unsigned 32-bit integer The file format major version number. The value shall be 1.
13-16 versionMinor Unsigned 32-bit integer The file format minor version number. The value shall be 0.
17-24 fileLength Unsigned 64-bit integer The physical length of the file, in bytes. Note that this length includes CRC bytes

and any zero padding as described in 6.2.2. Shall be in the open interval (0, 263).
25-32 xmlOffset Unsigned 64-bit integer The physical file offset, in bytes, to the beginning of the XML section of the file. As

defined in 3.2.10, this value includes CRC bytes. Shall be in the open interval (0,
263).

33-40 xmlLength Unsigned 64-bit integer The logical length, in bytes, of the XML section of the file, excluding CRC bytes and
zero padding. Shall be in the open interval (0, 263).

41-48 pageSize Unsigned 64-bit integer The size a page, in bytes, as defined in 6.2. The value shall be 1024.

E2807 − 11 (2019)

4

iTeh Standards
(https://standards.iteh.ai)

Document Preview
ASTM E2807-11(2019)

https://standards.iteh.ai/catalog/standards/sist/caf27dc9-6231-4be5-8591-65e403465963/astm-e2807-112019

https://standards.iteh.ai/catalog/standards/sist/caf27dc9-6231-4be5-8591-65e403465963/astm-e2807-112019

Blob. The non-terminal types are Structure, Vector, and Com-
pressedVector. Every element in an E57 file shall be one of
these types. Some or all of the data associated with an E57
element may be encoded in a binary section.

8.3.1.1 The data type of an E57 element is indicated by the
type XML attribute, which is required. Depending on the data
type, there may be other XML attributes that are required or
optional, and there may be restrictions on child elements.

8.3.1.2 String representations of the numeric data types are
documented in the W3C standard6 “XML Schema Part 2: Data
types Second Edition.” The following XML built-in data types
from that standard are referenced below: xsd:integer, xsd:float,
xsd:double. Instances of xsd:float and xsd:double shall not use
the special values: -0 (negative zero), +INF (positive infinity),
-INF (negative infinity), and NaN (not a number).

8.3.1.3 The rules for each E57 element data type are
detailed in following sections. The order of the XML attributes
is not important.

8.3.2 Integer Type:
8.3.2.1 Integer type E57 elements (Integer hereafter) are

used for storing integer values. The XML attributes for an
Integer are listed in Table 2.

8.3.2.2 The value of an Integer is represented as child text of
the XML element. This child text shall be zero or one
occurrence of the xsd:integer representation, with optional
leading and trailing XML whitespace. If no value is specified,
the default value of the Integer is 0.

8.3.2.3 The value of the Integer is restricted to be in the
range [minimum, maximum].

8.3.3 ScaledInteger Type:
8.3.3.1 For efficiency, it is possible to store numbers with

fractional parts using a ScaledInteger type E57 element
(ScaledInteger hereafter). A ScaledInteger stores an integer
“raw value,” and the actual floating point “scaled value” is
computed from the raw value by applying a scaling and offset.
The XML attributes for a ScaledInteger are listed in Table 3.

8.3.3.2 The rawValue of a ScaledInteger is encoded as child
text of the XML element. The child text shall be zero or one
occurrence of the xsd:integer representation, with optional
leading and trailing XML whitespace. The raw value is
restricted to be in the closed interval [minimum, maximum].
If raw value is unspecified, the default raw value is 0. The
scaled value (SV) is computed from the raw value (RV) using
the formula

SV 5 r~r ~r~RV! 3 r~scale!1r~offset!! (19)

where the (r) function means rounding to the nearest
representable double precision (53-bit mantissa) IEEE 754-
1985 floating-point number using the “Round To Nearest”

rounding mode (as described in IEEE 754-1985), and the ‘×’
and ‘+’ operators are considered to be infinitely precise.

8.3.4 Float Type:
8.3.4.1 Float type E57 elements (Float hereafter) are used

for storing floating point values. The XML attributes for a Float
are listed in Table 4.

8.3.4.2 The value of a Float is represented as child text of
the XML element. This child text shall be zero or one
occurrence of the xsd:float representation (if precision is
single) or xsd:double (if precision is double), with optional
leading and trailing XML whitespace. If no value is specified,
the default value of the Float is 0. The number represented is
the nearest representable single precision (or double precision
if precision is double) IEEE 754-1985 floating point
number (including denormals, but excluding NaNs, +INF,
-INF, and -0) to the text representation.

8.3.5 String Type:
8.3.5.1 String type E57 elements (String hereafter) are used

for storing text. The XML attributes for a String are listed in
Table 5.

8.3.5.2 The value of a String shall be encoded in UTF-8 and
shall be represented as child text of the XML element. Because
the content of a String may include any combination of
characters, the XML child text shall appear inside a Character
data (CDATA) section. If the character sequence “]]>” appears
in the String value, the characters shall be split across two or
more CDATA sections such that each “]]>” in the String value
is split into “]]” and “>” in adjacent CDATA sections. There
shall be no XML whitespace before the first CDATA section,
between CDATA sections, or after the last CDATA section.

8.3.6 Blob Type:
8.3.6.1 Blob type E57 elements (Blob hereafter) are used for

storing opaque blocks of binary data that will be interpreted by
the reader. The XML attributes for a Blob are listed in Table 6.

8.3.6.2 A Blob is divided into two parts within an E57 file,
an XML portion, documented here, and a binary section. The
XML portion indicates the size and location of the binary
section of the Blob. The binary section, described in 9.2, stores
the actual data content.

8.3.6.3 A Blob shall not contain any child elements or child
text.

8.3.6.4 Discussion—The format of the Blob’s data content is
not defined in this specification. A Blob may be used, for
example, to embed an image from a camera within an E57 file.

8.3.7 Structure Type:
8.3.7.1 Structure-type E57 elements (Structure hereafter)

are used to represent unordered groups of potentially hetero-
geneous E57 elements. The XML attributes for a Structure are
listed in Table 7.6 See “http://www.w3.org/TR/xmlschema-2/

TABLE 2 Attributes for an Integer Type E57 Element

Attribute
Name

Required/
Optional

Default
Value

Format Description

type required n/a string Shall be “Integer”.
minimum optional –263 xsd:integer The smallest value that can be encoded. Shall be in the interval [-263, 263-1].
maximum optional 263– 1 xsd:integer The largest value that can be encoded. Shall be in the interval [minimum, 263-1].

E2807 − 11 (2019)

5

iTeh Standards
(https://standards.iteh.ai)

Document Preview
ASTM E2807-11(2019)

https://standards.iteh.ai/catalog/standards/sist/caf27dc9-6231-4be5-8591-65e403465963/astm-e2807-112019

https://standards.iteh.ai/catalog/standards/sist/caf27dc9-6231-4be5-8591-65e403465963/astm-e2807-112019

8.3.7.2 A Structure shall contain zero or more child E57
elements of any type. The names of the child elements shall be
unique within the Structure.

8.3.7.3 A Structure shall not contain any child text.
8.3.8 Vector Type:
8.3.8.1 Vector-type E57 elements (Vector hereafter) are

used for storing ordered lists of items, known as records.
Vectors are intended to store identical or substantially identi-
cally typed records. The XML attributes for a Vector are listed
in Table 8.

8.3.8.2 A Vector shall have zero or more child elements, all
of which shall use the tag name vectorChild.

8.3.8.3 If the allowHeterogeneousChildren flag is
set to 0, then all the child elements shall have identical

structure in terms of number of children, element names,
element types, attributes, and descendant elements recursively
(that is, identical except for values), and the Vector is consid-
ered to be homogeneous. If the allowHeterogeneous-
Children flag is set to 1, then the types of the child elements
are unconstrained, and the Vector is considered to be hetero-
geneous.

8.3.8.4 A Vector shall not contain any child text.

8.3.8.5 The element names of the child E57 elements of a
Vector shall be string representations of integers beginning
with “0” for the first defined child element and incrementing by
one for each subsequently defined child element.

8.3.9 CompressedVector Type:

TABLE 3 Attributes for a ScaledInteger Type E57 Element

Attribute
Name

Required/
Optional

Default
Value

Format Description

type required n/a string Shall be “ScaledInteger”.
minimum optional –263 xsd:integer The smallest rawValue that can be encoded. Shall

be in the interval [-263, 263-1].
maximum optional 263– 1 xsd:integer The largest rawValue that can be encoded. Shall

be in the interval [minimum, 263-1].
scale optional 1.0 xsd:double The scale value for the ScaledInteger. Shall be

non-zero.
offset optional 0.0 xsd:double The offset value for the ScaledInteger.

TABLE 4 Attributes for a Float Type E57 Element

Attribute
Name

Required/
Optional

Default Value Format Description

type required n/a string Shall be “Float”.
precision optional double string Shall be either “single” for 32 bit IEEE 754-1985 floating

point values, or “double” for 64 bit IEEE 754-1985 floating
point values.

minimum optional -3.402823466e+38 if precision is single, or
-1.7976931348623158e+308 if precision is
double.

xsd:double The smallest value that can be encoded. Shall be in the
interval [-3.402823466e+38, 3.402823466e+38] if precision
is single, or [-1.7976931348623158e+308,
1.7976931348623158e+308] if precision is double.

maximum optional 3.402823466e+38 if precision is single, or
1.7976931348623158e+308 if precision is
double.

xsd:double The largest value that can be encoded. Shall be in the in-
terval [minimum, 3.402823466e+38] if precision is single, or
[minimum, 1.7976931348623158e+308] if precision is
double.

TABLE 5 Attributes for a String Type E57 Element

Attribute
Name

Required/
Optional

Default Value Format Description

type required n/a string Shall be “String”.

TABLE 6 Attributes of a Blob Type E57 Element

Attribute
Name

Required/
Optional

Default
Value

Format Description

type required n/a string Shall be “Blob”.
fileOffset required n/a xsd:integer The physical file offset of the start of the associated binary Blob section in the

E57 file. Shall be in the interval [0, 263).
length required n/a xsd:integer The logical length of the associated binary Blob section, in bytes. Shall be in

the interval (0, 263).

TABLE 7 Attributes for a Structure Type E57 Element

Attribute
Name

Required/
Optional

Default Value Format Description

type required n/a string Shall be “Structure”.

E2807 − 11 (2019)

6

iTeh Standards
(https://standards.iteh.ai)

Document Preview
ASTM E2807-11(2019)

https://standards.iteh.ai/catalog/standards/sist/caf27dc9-6231-4be5-8591-65e403465963/astm-e2807-112019

https://standards.iteh.ai/catalog/standards/sist/caf27dc9-6231-4be5-8591-65e403465963/astm-e2807-112019

8.3.9.1 CompressedVector-type E57 elements (Com-
pressedVector hereafter) are used for storing ordered lists of
identically typed items, known as records, in a compressed
binary format. The XML attributes for a CompressedVector-
type E57 element are listed in Table 9.

8.3.9.2 A CompressedVector is divided into two parts within
an E57 file, an XML portion, documented here, and a binary
section. The XML portion describes the format of the records
using a prototype structure, specifies what compression scheme
is used for the data, and indicates the size and location of the
binary section of the CompressedVector. The binary section,
described in 9.3, stores the actual data content.

8.3.9.3 The child elements for a CompressedVector are
listed in Table 10. A CompressedVector shall not contain any
child text.

(1) The prototype child element specifies the structure
of the data that will be stored in the CompressedVector, as well
as the possible range of values that the data may take. The
prototype shall be any E57 element type (with potential
sub-children) except Blob and CompressedVector. The values
of the prototype elements and sub-elements are ignored,
and need not be specified.

(2) Discussion—The prototype child element describes
the abstract requirements of a representation of the data
contents. The abstract requirements, in combination with an
encoding technique (provided by the codecs child element),
specify the format of the contents of the binary section of the
file. The prototype will typically be a Structure with a
single level of child elements. A prototype with more than
one level of child elements is allowed, but not recommended.

(3) The codecs child element is a heterogeneous vector
of Codec Structures. Each Codec Structure specifies how a set
of E57 elements within a record will be compressed in the
associated binary section. The child elements for a Codec
Structure are listed in Table 11.

(a) The inputs child element is a Vector of Strings.
Each string is a relative path name of an element in the
prototype Structure that the codec will compress. The
relative pathnames shall be specified with respect to the
prototype element.

(b) The bitPackCodec child element is a Structure
with no child elements. Defining this empty Structure specifies
that all the elements described by the inputs element shall be
encoded in the binary section using the bitPackCodec. Opera-
tion of the bitPackCodec is described in 9.7.

(4) Each terminal element in the prototype shall be listed
at most once as an input to a codec. If a terminal element in the
prototype is not listed as an input to a codec, it is implied that
the element is compressed by the bitPackCodec.

8.4 XML Data Hierarchy:
8.4.1 The XML section of an E57 file shall follow a

particular format. A set of data types is defined by this standard
to support the storage of 3D point data and 2D imagery in a
common, file-level coordinate system. These data types are
defined in the following sub-sections. They are constructed
from the eight fundamental data types defined in 8.3.

8.4.1.1 Discussion—An example instance of an XML data
hierarchy is shown in Fig. 2. A more extensive example, in
XML format, is given in Appendix X1.

8.4.2 E57Root:
8.4.2.1 An E57Root Structure stores the top-level informa-

tion for the XML section of the file. The child elements for the
E57Root Structure are listed in Table 12.

8.4.2.2 The root element of the XML tree shall be an
instance of an E57Root Structure with the element name
e57Root.

8.4.2.3 The E57 XML namespace shall be declared as the
default namespace in the E57Root element as:

xmlns=9http://www.astm.org/COMMIT/E57/2010-e57-v1.09

No other default namespaces shall be declared in child
elements of the E57Root element.

8.4.2.4 All XML namespaces (with the exception of the
default namespace) shall be declared in the E57Root element
as an XML attribute in the following format:

xmlns:<namespace>=9<uri>9

where <namespace> is the namespace prefix and <uri>
is a uniform resource identifier (URI). No XML namespaces
shall be declared in child elements of the E57Root element.

TABLE 8 Attributes for a Vector Type E57 Element

Attribute Name
Required/
Optional

Default
Value

Format Description

type required n/a string Shall be “Vector”.
allowHeterogeneousChildren optional 1 xsd:integer Indicates whether the child elements may have different structure.

Set to 1 to enable, set to 0 to disable. Shall be either 0 or 1.

TABLE 9 Attributes for a CompressedVector Type E57 Element

Attribute
Name

Required/
Optional

Default
Value

Format Description

type required n/a string Shall be “CompressedVector”.
fileOffset required n/a xsd:integer The physical file offset of the start of the CompressedVector binary section in

the E57 file (an integer). Shall be in the interval (0, 263).
recordCount required n/a xsd:integer The number of records in the compressed binary block (an integer). Shall be

in the interval [0, 263).

E2807 − 11 (2019)

7

iTeh Standards
(https://standards.iteh.ai)

Document Preview
ASTM E2807-11(2019)

https://standards.iteh.ai/catalog/standards/sist/caf27dc9-6231-4be5-8591-65e403465963/astm-e2807-112019

https://standards.iteh.ai/catalog/standards/sist/caf27dc9-6231-4be5-8591-65e403465963/astm-e2807-112019

8.4.2.5 Discussion—The e57LibraryVersion String is
determined by the developer of the low-level software or
library that writes E57 files, not by high-level applications that
use the E57 file writing software/library.

8.4.3 Data3D:
8.4.3.1 A Data3D Structure represents a collection of 3D

points and any associated attributes, as well as metadata about

the collection of points. The child elements for the Data3D
Structure are listed in Table 13.

8.4.3.2 The 3D points shall be stored either in a local
coordinate system relative to the sensor or in a file-level
coordinate system common to all the 3D data sets in an E57
file. If the points are stored using the local coordinate system,
the pose child element shall be present and shall store the

TABLE 10 Child Elements for a CompressedVector Type E57 Element

Element
Name

Type
Required/
Optional

Description

prototype Structure, Integer, Float, ScaledInteger, String, or Vector required Specifies the fields of the CompressedVector records and
their range limits.

codecs Vector of Codec Structures optional A heterogeneous Vector specifying the compression
method to be used for fields within the
CompressedVector.

TABLE 11 Child Elements for the Codec Structure

Element Name Type
Required/
OptionalA

Description

inputs Vector of Strings required A Vector listing the relative path names of elements in the prototype that this codec will
compress.

bitPackCodec Structure optional* Specifies that the bitPackCodec will be used for compressing the data.
AOptional fields with an asterisk have additional constraints. See text for details.

NOTE 1—For clarity, not all elements of the hierarchy are shown. Stacked boxes indicate Vectors or Compressed Vectors of elements.
FIG. 2 An Example XML Data Hierarchy Instance

TABLE 12 Child Elements for the E57Root Structure

Element Name Type
Required/
Optional

Description

formatName String required Shall contain the string “ASTM E57 3D Imaging Data File”.
guid Guid String required A globally unique identification (GUID) String for the current version of the file

(see 8.4.22).
versionMajor Integer required The major version number of the file format. Shall be 1.
versionMinor Integer required The minor version number of the file format. Shall be 0.
e57LibraryVersion String optional The version identifier for the E57 file format library that wrote the file.
creationDateTime DateTime Structure optional Date and time that the file was created.
data3D Vector of Data3D Structures optional A heterogeneous Vector of Data3D Structures for storing 3D imaging data.
images2D Vector of Image2D Structures optional A heterogeneous Vector of Image2D Structures for storing 2D images from a

camera or similar device.
coordinateMetadata CoordinateMetadata String optional Information describing the Coordinate Reference System to be used for the

file.

E2807 − 11 (2019)

8

iTeh Standards
(https://standards.iteh.ai)

Document Preview
ASTM E2807-11(2019)

https://standards.iteh.ai/catalog/standards/sist/caf27dc9-6231-4be5-8591-65e403465963/astm-e2807-112019

https://standards.iteh.ai/catalog/standards/sist/caf27dc9-6231-4be5-8591-65e403465963/astm-e2807-112019

transform that, when applied to the 3D points, will place them
in the file-level coordinate system. If the points are stored using
the file-level coordinate system, the pose child element shall
be omitted, and the identity transform shall be implied for the
pose.

(1) Points shall be stored in the local coordinate system
relative to the sensor when possible.

(2) Discussion—This statement implies that storing the
points in the file-level coordinate system and discarding the
pose transform is prohibited if the points are known in the local
coordinate system, since this practice results in loss of infor-
mation.

8.4.3.3 The originalGuids child element identifies the
data set (or sets) from which the data originated (that is, not the
most recent version, but the first version). If the original-
Guids element is present, the strings stored in the Vector shall
contain the GUIDs that identify the source of the data in the
Data3D object. The absence of the originalGuids element
shall indicate that the Data3D object has not been modified

from its original version. In this case, the original version shall
be indicated by the guid element.

8.4.3.4 If the points stored in the pointRecord element
are represented in Cartesian coordinates (that is, if
cartesianX, cartesianY, and cartesianZ are
defined), then the cartesianBounds element shall be
defined.

8.4.3.5 If the points in the pointRecord element are
represented in spherical coordinates (that is, if
sphericalRange, sphericalElevation, and
sphericalAzimuth are defined), then the spherical-
Bounds element shall be defined.

8.4.3.6 If the rowIndex element is defined for the points
in the pointRecord, then the indexBounds element shall
be defined and within the indexBounds element, the row-
Minimum and rowMaximum shall be defined. If the col-
umnIndex element is defined for the points in the
pointRecord, then the indexBounds element shall be

TABLE 13 Child Elements for the Data3D Structure

Element Name Type
Required/
OptionalA

Description

guid Guid String required A globally unique identifier for the current version of the
Data3D object (see 8.4.22).

points CompressedVector of PointRecord Structures required A compressed vector of PointRecord Structures referring to
the binary data that actually stores the point data.

pose RigidBodyTransform Structure optional A rigid body transform that transforms data stored in the
local coordinate system of the points to the file-level
coordinate system.

originalGuids Vector of Guid Strings optional A Vector of globally unique identifiers identifying the data
set (or sets) from which the points in this Data3D
originated.

pointGroupingSchemes PointGroupingSchemes Structure optional The defined schemes that group points in different ways.
name String optional A user-defined name for the Data3D.
description String optional A user-defined description of the Data3D.
cartesianBounds CartesianBounds Structure optional* The bounding region (in Cartesian coordinates) of all the

points in this Data3D (in the local coordinate system of the
points).

sphericalBounds SphericalBounds Structure optional* The bounding region (in spherical coordinates) of all the
points in this Data3D (in the local coordinate system of the
points).

indexBounds IndexBounds Structure optional* The bounds of the row, column, and return number of all
the points in this Data3D.

intensityLimits IntensityLimits Structure optional* The limits for the value of signal intensity that the sensor is
capable of producing.

colorLimits ColorLimits Structure optional* The limits for the value of red, green, and blue color that
the sensor is capable of producing.

acquisitionStart DateTime Structure optional The start date and time that the data was acquired.
acquisitionEnd DateTime Structure optional The end date and time that the data was acquired.
sensorVendor String optional The name of the manufacturer for the sensor used to

collect the points in this Data3D.
sensorModel String optional The model name or number for the sensor.
sensorSerialNumber String optional The serial number for the sensor.
sensorHardwareVersion String optional The version identifier for the sensor hardware at the time of

data collection.
sensorSoftwareVersion String optional The version identifier for the software used for the data

collection.
sensorFirmwareVersion String optional The version identifier for the firmware installed in the sensor

at the time of data collection.
temperature Float optional The ambient temperature, measured at the sensor, at the

time of data collection (in degrees Celsius). Shall be $

−273.15° (absolute zero).
relativeHumidity Float optional The percentage relative humidity, measured at the sensor,

at the time of data collection. Shall be in the interval [0,
100].

atmosphericPressure Float optional The atmospheric pressure, measured at the sensor, at the
time of data collection (in Pascals). Shall be positive.

AOptional fields with an asterisk have additional constraints. See text for details.

E2807 − 11 (2019)

9

iTeh Standards
(https://standards.iteh.ai)

Document Preview
ASTM E2807-11(2019)

https://standards.iteh.ai/catalog/standards/sist/caf27dc9-6231-4be5-8591-65e403465963/astm-e2807-112019

https://standards.iteh.ai/catalog/standards/sist/caf27dc9-6231-4be5-8591-65e403465963/astm-e2807-112019

defined and within the indexBounds element, the colum-
nMinimum and columnMaximum shall be defined. If the
returnIndex element is defined for the points in the
pointRecord, then the indexBounds element shall be
defined and within the indexBounds element, the re-
turnMinimum and returnMaximum shall be defined.

8.4.3.7 If the intensity element is defined for the points
in the pointRecord, and if the minimum and maximum
intensity values that can be produced by the device that
obtained the intensity measurements are known, then the
intensityLimits element shall be defined.

8.4.3.8 If the colorRed, colorGreen, and color-
Blue elements are defined for the points in the
pointRecord, and if the minimum and maximum color
values that can be produced by the device that obtained the
color measurements are known, then the colorLimits
element shall be defined.

8.4.4 PointRecord:
8.4.4.1 A PointRecord Structure stores the information for

an individual point measurement from a 3D imaging system.
The child elements for the PointRecord Structure are listed in
Table 14.

8.4.4.2 One or more of the following elements shall be
defined: cartesianX, sphericalRange. If any elements
in the set {cartesianX, cartesianY, cartesianZ} are
defined, then all elements in that set shall be defined. If any

elements in the set {sphericalRange,
sphericalAzimuth, sphericalElevation} are
defined, then all elements in that set shall be defined.

8.4.4.3 The values for sphericalRange,
sphericalAzimuth, and sphericalElevation are
restricted to the limits described for spherical coordinates in
5.5.

8.4.4.4 If returnIndex or returnCount are defined,
then both returnIndex and returnCount shall be de-
fined. If returnIndex is defined, the PointRecords from an
emitted single pulse shall be contiguous, and shall be sorted in
ascending returnIndex values.

8.4.4.5 The intensity element shall encode the strength
of the signal for a point. The intensity value shall not include
compensation for signal strength reduction as a function of
distance, surface orientation, or other properties of the surface
being sensed.

8.4.4.6 If any elements in the set {colorRed,
colorGreen, colorBlue} are defined, then all elements in
that set shall be defined. The units of colorRed,
colorGreen, and colorBlue are not specified, but they
shall all be the same.

8.4.4.7 If cartesianInvalidState is defined, its
value shall have the following interpretation. If the value is 0,
the values of cartesianX, cartesianY, and carte-
sianZ shall all be meaningful. If the value is 1, only the

TABLE 14 Child Elements for the PointRecord Structure

Element Name Type
Required/
OptionalA

Description

cartesianX Float/ScaledInteger/Integer optional* The X coordinate (in meters) of the point in Cartesian coordinates.
cartesianY Float/ScaledInteger/Integer optional* The Y coordinate (in meters) of the point in Cartesian coordinates.
cartesianZ Float/ScaledInteger/Integer optional* The Z coordinate (in meters) of the point in Cartesian coordinates.
sphericalRange Float/ScaledInteger/Integer optional* The range (in meters) of points in spherical coordinates. Shall be

non-negative.
sphericalAzimuth Float/ScaledInteger optional* Azimuth angle (in radians) of point in spherical coordinates (see 5.5

for restrictions on values).
sphericalElevation Float/ScaledInteger optional* Elevation angle (in radians) of point in spherical coordinates (see

5.5 for restrictions on values).
rowIndex Integer optional The row number of point (zero-based). This is useful for data that is

stored in a regular grid. Shall be in the interval [0, 263).
columnIndex Integer optional The column number of point (zero-based). This is useful for data

that is stored in a regular grid. Shall be in the interval [0, 263).
returnCount Integer optional* Only for multi-return sensors. The total number of returns for the

pulse that this corresponds to. Shall be in the interval (0, 263).
returnIndex Integer optional* Only for multi-return sensors. The number of this return (zero

based). That is, 0 is the first return, 1 is the second, and so on.
Shall be in the interval [0, returnCount).

timeStamp Float/ScaledInteger/Integer optional The time (in seconds) since the start time for the data, which is
given by acquisitionStart in the parent Data3D Structure. Shall be
non-negative.

intensity Float/ScaledInteger/Integer optional Point response intensity. Unit is unspecified.
colorRed Float/ScaledInteger/Integer optional* Red color coefficient. Unit is unspecified.
colorGreen Float/ScaledInteger/Integer optional* Green color coefficient. Unit is unspecified.
colorBlue Float/ScaledInteger/Integer optional* Blue color coefficient. Unit is unspecified.
cartesianInvalidState Integer optional Indicates whether the Cartesian coordinate vector or its magnitude

is meaningful. Shall be in the interval [0, 2].
sphericalInvalidState Integer optional Indicates whether the spherical coordinate vector or its range value

are meaningful. Shall be in the interval [0, 2].
isTimeStampInvalid Integer optional Indicates whether the timeStamp element is meaningful. Shall be in

the interval [0, 1].
isIntensityInvalid Integer optional Indicates whether the intensity element is meaningful. Shall be in

the interval [0, 1].
isColorInvalid Integer optional Indicates whether the colorRed, colorBlue, and colorGreen

elements are meaningful. Shall be in the interval [0, 1].
A Optional fields with an asterisk have additional constraints. See text for details.

E2807 − 11 (2019)

10

iTeh Standards
(https://standards.iteh.ai)

Document Preview
ASTM E2807-11(2019)

https://standards.iteh.ai/catalog/standards/sist/caf27dc9-6231-4be5-8591-65e403465963/astm-e2807-112019

https://standards.iteh.ai/catalog/standards/sist/caf27dc9-6231-4be5-8591-65e403465963/astm-e2807-112019

