INTERNATIONAL STANDARD

ISO 4381

Second edition 1991-11-15

Plain bearings — Lead and tin casting alloys for multilayer plain bearings

iTeh Spaliers lisses Alliages moulés de plomb et d'étain pour paliers lisses multicouches (standards.iteh.ai)

<u>ISO 4381:1991</u> https://standards.iteh.ai/catalog/standards/sist/777a7fa2-ec0a-463a-91e0-02192706f4fd/iso-4381-1991

Reference number ISO 4381:1991(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting a vote.

International Standard ISO 4381 was prepared by Technical Committee ISO/TC 123, Plain bearings, Sub-Committee SC 2, Materials and Iubricants, their properties, characteristics, test methods and testing conditions.

https://standards.iteh.ai/catalog/standards/sist/777a7fa2-ec0a-463a-91e0-

This second edition cancels and replaces the first edition (ISO 4381:1981), of which it constitutes a technical revision.

Annexes A and B of this International Standard are for information only.

© ISO 1991

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization

Case Postale 56 • CH-1211 Genève 20 • Switzerland

Printed in Switzerland

Plain bearings — Lead and tin casting alloys for multilayer plain bearings

1 Scope

This International Standard specifies requirements for bearing metals based on lead and tin casting alloys for multilayer plain bearings.

3 Requirements

3.1 Chemical composition

The chemical composition shall be within the limits specified in tables 1 and 2, where single figures denote maximum values.

The chemical analysis is decisive for the acceptance **iTeh STANDARD**^{of the bearing metals.}

(standards.iten Material properties

Material properties shall be in accordance with ta-ISO 4381:199 bles 1 and 2.

2 Normative references and address iteh ai/catalog/standards/sist/777a7fa2-ec0a-463a-91e0-02192706f4fd/iso-438[he)Brinell hardness at 20 °C is regarded as the test

The following standards contain provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 4384-1:1982, Plain bearings — Hardness testing of bearing metals — Part 1: Compound materials.

ISO 4384-2:1982, Plain bearings — Hardness testing of bearing metals — Part 2: Solid materials.

ISO 4386-2:1982, Plain bearings — Metallic multilayer plain bearings — Part 2: Destructive testing of bond for bearing metal layer thicknesses equal to or greater than 2 mm. The Brinell hardness at 20 °C is regarded as the test and acceptance value. All other indicated values are mean values or ranges and are regarded as typical values for the designer. In view of the range of possible alloy compositions and the marked influence exerted by the cooling conditions on the mechanical properties, relatively large deviations from the indicated values are to be expected in individual cases.

3.3 Guide to selection of material

A guide to the uses of bearing metals and for the hardness of the mating bearing part (shaft) is given in annex A.

4 Designation

EXAMPLE

Designation of the bearing metal having the symbol PbSb15Sn10:

Bearing metal ISO 4381 - PbSb15Sn10

Chemical elements and properties		PbSb15SnAs	Chemical compo PbSb15Sn10	sition, % (<i>m/m</i>) PbSb14Sn9CuAs	PbSb10Sn6
Pb		Remainder	Remainder	Remainder	Remainder
5	Sb	13,5 to 15,5	14 to 16	13 to 15	9 to 11
5	Sn	0,9 to 1,7	9 to 11	8 to 10	5 to 7
C	Cu	0,7	0,7	0,7 to 1,5	0,7
P	ls	0,8 to 1,2	0,6	0,3 to 1	0,25
C	2d			0,3 to 0,7	
1	li			0,2 to 0,6	
E	3i	0,1	0,1	0,1	0,1
F	e	0,1	0,1	0,1	0,1
<i>F</i>	M	0,01	0,01	0,01	0,01
Zn		0,01	0,01	0,01	0,01
Total	others	0,2	0,2	0,2	0,2
		Material prope	erties of test bar		
	20 °C min.			22/	16
rinell hardness ¹⁾	50 °C ≈	15	16	22	16
HB 10/250/180	120 °C ≈	(standa	ards.iteh.ai	16	14
	150 °C ≈	10	0 4381.1991	10	8
	20 °C https://sta	ndards.iteB9ai/catalog/	standards/six3777a7fa2-	ec0a-463a4691e0-	39
% Proof stress, 0,2	50 °C ≈	37 02192700	5f4fd/iso-4381-1991 32	39	32
N/mm²	100 °C ≈	25	30	27	27
Bond strength , R_{Ch} , between bearing metal (limiting value; see ISO 4386-2) and steel with C = 0,1 % (<i>m/m</i>) bearing metal thick- ness \geq 6 mm N/mm ² \approx		60	70	67	65
Rotating bending fatigue, $R_{\rm rbf}$, 10 ⁷ cycles N/mm ² \approx		±24	± 25	<u>+</u> 26	±21
Linear thermal expansion coefficient, a_l 10 ⁻⁶ /K \approx		25	24	24,7	25,3
Melting range °C ≈		240 to 350	240 to 270 ²⁾	240 to 420	240 to 260 ²⁾
Casting range °C ≈		450 to 500	480 to 520	480 to 520	480 to 520
Density, ϱ kg/dm ³ \approx		9,7	9,9	9,7	10,3

Table 1 — Lead casting alloys

Chemical elemer	its and properties	Cl SnSb12Cu6Pb	nemical composition, % (m/m) SnSb8Cu4	SnSb8Cu4Cd		
S	in	Remainder	Remainder	Remainder		
S	ib	11 to 13	7 to 8	7 to 8		
C	iu	5 to 7	3 to 4	3 to 4		
C	d			0,8 to 1,2		
Р	b	1 to 3	0,35	0,35		
A	NS	0,11)	0,12)	0,5		
٢	11			0,1 to 0,5		
E	3i	0,08	0,08	0,08		
F	e	0,1	0,1	0,05		
F	N	0,01	0,01	0,01		
Z	'n	0,01	0,01	0,01		
Total	others	0,4	0,2	0,2		
Material properties of test bar						
	-20°C min STA	NDA ²⁵ D PR		28		
Brinell hardness ³⁾	50 °C ≈	20 20	17	25		
HB 10/250/180	120 °C ≈	nuaru _t a.nen.a	11	19		
	150 °C ≈	ISO 43818:1991	8	13		
	https:/20arclards.iteh.ai/ca	talog/standagis/sist/777a7fa	2-ec0a-463a ₄₇ 91e0-	62		
0,2 % Proof stress, $R_{p0,2}$	50 °C ≈	60	44	44		
N/mm²	100 °C ≈	36	27	30		
Bond strength, R_{Ch} , betwe value; see ISO 4386-2) and C = 0,1 % (m/m) bearing $N/mm^2 \approx$	en bearing metal (limiting d steel with metal thickness ≽ 6 mm	40	80	90		
Rotating bending fatigue, $N/mm^2 \approx$	R _{rbf} , 10 ⁷ cycles	± 28	±31	± 34		
Linear thermal expansion 10^{-6} /K \approx	coefficient, a _l	22,7	23,9	23,9		
Melting range °C ≈		183 to 400	233 to 360	233 to 360		
Casting range °C ≈		480 to 520	440 to 460	440 to 460		
Density, ϱ kg/dm³ ≈		7,4	7,3	7,3		
 In special cases a maximum of 0,8 % (m/m) is permissible. In special cases a maximum of 0,5 % (m/m) is permissible. 						

Table	2		Tin	casting	allo	ys
-------	---	--	-----	---------	------	----

3) For hardness testing, see ISO 4384-1 and ISO 4384-2.

Annex A

(informative)

Guide to uses of bearing metals and for the hardness of the mating bearing part (shaft)

Bearing alloys	Characteristics and principal uses	Minimum hardness of the shaft ¹⁾		
PbSb15SnAs	Suitable only for pure sliding stresses at low load and low sliding velocities in the hydrodynamic range; good embeddability.			
	Almost exclusively cast onto steel strip by means of continuous casting processes re- sulting in an extremely high cooling speed.			
	Used for wrapped bushes and thin-walled bearing liners with a wall thickness of up to about 3 mm as well as for thrust washers. Bushes for camshafts in internal combustion engines, gear bushes, connecting rod and main bearings in smaller piston compressors.			
PbSb15Sn10	Suitable for pure sliding stresses at mean loads and mean sliding velocities in the hydrodynamic range; low impact stress; good embeddability.			
	Used at mean stresses for plain bearings, tilting pads, crossheads and cone breakers.			
PbSb14Sn9CuAs	Good sliding properties, use in mixed friction range possible, suitable for high to low sliding velocities in the hydrodynamic range/mean impact stress, less sensitive to edge compression, good heat conductor. Highest thermal loadability of lead-based bearing materials.			
	Used for plain bearings for electric machines, gears, rolling mills, for segments and con-			
	ISO 4381:1991	160 HB		
PbSb10Sn6	Suitable for pure sliding stresses at low load and mean sliding velocities in the 1e0- hydrodynamic range, moderate impact stress; good embeddability. 02192/001410/so-4381-1991			
SnSb12Cu6Pb	Good sliding properties at mean load and high to low sliding velocities in the hydrodynamic range; good impact stress; sensitive to reversed bending stress and edge compression; high wear resistance in the case of rough journals (grey cast iron).			
	Used for plain bearings for turbines, compressors, electric machines and gears.			
SnSb8Cu4	Good sliding properties, conformability and high toughness; good embeddability; suitable for high sliding velocities in the hydrodynamic range, mean load; impact stress at low frequency; insensitive to reversed bending stress.			
	Used for high loaded rolling mill bearings; for the production of wrapped bushes, thin- walled bearing liners with a wall thickness of up to about 3 mm and thrust washers.			
SnSb8Cu4Cd	Good sliding properties, suitable for high sliding velocities in the hydrodynamic range at high load, low sensitivity to edge compression, high impact stress at high frequency; in- sensitive to reversed bending stress; good embeddability.			
	Used for main and connecting rod bearings, cross-head bearings for large piston engines and rolling mill bearings.			
1) In multilayer plain bearings, the difference between the hardness of the bearing material and the shaft material should be such that welding under working conditions is safely avoided. The working conditions, in particular the lubrication conditions, have considerable influence on the selection of the shaft material. For this reason, the recommended hardness value for the shaft material is a minimum value. In general, unquenched and untempered shaft materials are used in the case of bearing materials based on lead and tin.				

Annex **B**

(informative)

Bibliography

[1] ISO 4386-1:—¹⁾, Plain bearings — Metallic multilayer plain bearings — Part 1: Non-destructive ultrasonic testing of bond.

[2] ISO 4386-3:-2), Plain bearings – Metallic multilayer plain bearings – Part 3: Non-destructive penetrant testing.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 4381:1991</u> https://standards.iteh.ai/catalog/standards/sist/777a7fa2-ec0a-463a-91e0-02192706f4fd/iso-4381-1991

¹⁾ To be published. (Revision of ISO 4386-1:1982)

²⁾ To be published.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 4381:1991</u> https://standards.iteh.ai/catalog/standards/sist/777a7fa2-ec0a-463a-91e0-02192706f4fd/iso-4381-1991

UDC 621.822.5:[669.45+669.65].018.24-14

Descriptors: bearings, plain bearings, bearing alloys, lead alloys, tin alloys, specifications, chemical composition, designation.

-

Price based on 5 pages