INTERNATIONAL STANDARD

ISO 4382-1

Second edition 1991-11-01

Plain bearings — Copper alloys —

Part 1:

Cast copper alloys for solid and multilayer iTeh Sthick-walled plain bearings.

(standards.iteh.ai)

Paliers lisses — Alliages de cuivre —

https://standards.it.Partie_1; Alliages_de_cuivre_moulés_pour_paliers lisses à paroi épaisse, massifs et multicouches 1991

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting a vote.

International Standard ISO 4382-1 was prepared by Technical Committee ISO/TC 123, Plain bearings, Sub-Committee SC 2, Materials and lubricants, their properties, characteristics, test methods and testing conditions.

https://standards.iteh.ai/catalog/standards/sist/34be40b7-3c4d-41d0-a79a-

This second edition cancels and replaces the first edition (ISO 4382-1:1982), of which it constitutes a technical revision.

ISO 4382 consists of the following parts, under the general title *Plain bearings* — *Copper alloys*:

- Part 1: Cast copper alloys for solid and multilayer thick-walled plain bearings
- Part 2: Wrought copper alloys for solid plain bearings

Annexes A and B of this part of ISO 4382 are for information only.

© ISO 1991

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization Case Postale 56 • CH-1211 Genève 20 • Switzerland

Printed in Switzerland

Plain bearings — Copper alloys —

Part 1:

Cast copper alloys for solid and multilayer thick-walled plain bearings

Scope

This part of ISO 4382 specifies requirements for cast copper alloys for use in solid and multilayer thickwalled plain bearings. It gives a limited selection of P alloys currently available for general purposes.

Chemical composition

The chemical composition shall be within the limits specified in tables 1 and 2, where single figures denote maximum values.

(standards.iteh.ai)

Normative references

The following standards contain provisions which which Analysis ards/sist/34be40b7-3c4d-41d0-a79athrough reference in this text, constitute provisions of this part of ISO 4382. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this part of ISO 4382 are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 4383:1991. Plain bearings — Multilayer materials for thin-walled plain bearings.

ISO 4384-1:1982, Plain bearings — Hardness testing of bearing metals — Part 1: Compound materials.

ISO 4384-2:1982, Plain bearings — Hardness testing of bearing metals - Part 2: Solid materials.

ISO 6892:1984, Metallic materials — Tensile testing.

Requirements

If the purchaser's requirements necessitate limits for any element not specified, or limits different from those already specified, these should be agreed upon between supplier and purchaser.

iso-438 Methods of analysis for alloying elements, permissible additions, or impurities shall either be as specified in relevant International Standards or as mutually agreed between supplier, purchaser and

Material properties

any mutually acceptable arbitrator.

4.1 General

The minimum tensile strength and elongation values quoted in tables 1 and 2 are included as properties which may assist designers. Brinell hardness is the mandatory quality control check. If tensile strength and elongation tests are required, this should be stated by the purchaser at the time of ordering.

For finished bearings Brinell hardness will normally be checked.

Table 1 — Copper/lead/tin and copper/aluminium casting alloys for solid and multilayer thick-walled plain bearings

	- UCA	rings					
		Chemical composition, % (m/m)					
Chemical elements and properties							
	CuPb9Sn5	CuPb10Sn10 1)	CuPb15Sn8	CuPb20Sn5	CuAl10Fe5Ni5		
Cu	Remainder	Remainder	Remainder	Remainder	Remainder		
Sn	4 to 6	9 to 11	7 to 9	4 to 6	0,2		
Pb	8 to 10	8 to 11	13 to 17	18 to 23	0,1		
Zn	2	2	2	2	0,5		
Fe	0,25	0,25	0,25	0,25	3,5 to 5,5		
Ni	2	2	2	2,5	3,5 to 6,5		
Sb	0,5	0,5	0,5	0,75			
Р	0,12)	0,052)	0,12)	0,12)			
Al	0,01	0,01	0,01	0,01	8 to 11		
Mn	0,2	0,2	0,2	0,2	3		
Si	0,01	0,01	0,01	0,01	0,1		
s iTek	ST ^{0,1} NT	ARD PI	0,1	0,1	NA TAN		
Cu + Fe + Ni + Al + Mn				a	> 99,2		
	Material prope	erties of test bar	.ai)				
Brinell hardness 3)	ISC	4382-1:1991					
HB 2,5/62,5/10, min. GS Sand https://standa GM Permanent mould GZ Centrifugal GC Continuous	rds.iteh.ai65atalog/s	tandards6sist/34be/ 6b9/iso-6582-1-19 70		-a79a-45 50 50 50	140 140 140 140		
Tensile strength, R _m N/mm², min. GS — Sand GM — Permanent mould GZ — Centrifugal GC — Continuous	160 200 220 230	180 220 220 220 220	170 200 220 220	150 170 180 180	600 600 680 680		
Elongation, percent after fracture, A %, min. GS — Sand GM — Permanent mould GZ — Centrifugal GC — Continuous	7 5 6 9	7 3 6 6	5 3 8 8	5 5 7 7	10 12 12 12		

	Chemical composition, $\%$ (m/m)					
Chemical elements and properties	CuPb9Sn5	CuPb10Sn10 1)	CuPb15Sn8	CuPb20Sn5	CuAl10Fe5Ni5	
	Material prop	erties of test bar	1	L.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	I	
0,2 % Proof stress, R _{p0,2} N/mm², min.						
GS - Sand	60	80	80	60	250	
GM — Permanent mould	80	140	100	80	250	
GZ — Centrifugal	80	110	100	80	280	
GC — Continuous	130	110	100	80	280	
Elastic modulus, E						
kN/mm² ≈	85	90	85	75	120	
Linear thermal expansion coefficient, α_l 10 ⁻⁶ /K \approx	18	18	18	19	16	
Thermal conductivity, λ, at 15 °C W/(m·K) ≈	71	47	47	59	60	
Density, ϱ kg/dm ³ \approx	9	9	9,1	9,3	7,6	

- 1) The chemical composition of this alloy differs from that of thin-walled multilayer plain bearings (see ISO 4383).
- 2) For continuous casting, the phosphorus content may be increased to a maximum of 1,5 % by agreement.
- 3) For hardness testing, see ISO 4384-2.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 4382-1:1991 https://standards.iteh.ai/catalog/standards/sist/34be40b7-3c4d-41d0-a79a-1afbbb55c6b9/iso-4382-1-1991 Table 2 — Copper/tin/zinc casting alloys for solid plain bearings

	Chemical composition, $\%$ (m/m)					
Chemical elements and properties	CuSn8Pb2	CuSn10P	CuSn12Pb2	CuPb5Sn5Zn5	CuSn7Pb7Zn3	
Cu	Remainder	Remainder	Remainder	Remainder	Remainder	
				Kemamaci	Kemamuei	
Sn	6 to 9	10 to 11,5	11 to 13 ¹⁾	4 to 6	6 to 8	
Pb	0,5 to 4	0,25	1 to 2,5	4 to 6	5 to 8	
Zn	3	0,05	2	4 to 6	2 to 5	
Fe	0,2	0,1	0,2	0,3	0,2	
Ni	2,5	0,1	2	2,5	2	
Sb	0,25	0,05	0,2	0,25	0,35	
P	0,052)	0,5 to 1	0,05 to 0,4 ²⁾ , ³⁾	0,05?)	0,12)	
Al	0,01	0,01	0,01	0,01	0,01	
Mn		0,5	0,2			
SI	0,01	0,02	0,01	0,01	0,01	
S	0,1	0,05	0,05	0,1	0,1	
iTe	Material pr	operties of test	baPREVI	EW		
Brinell hardness 4)	(stan	dards.i	teh ai)			
HB 2,5/62,5/10, min. GS — Sand	60	1				
GM Permanent mould	85	70	80	60	65	
GZ Centrifugal	85	ISO 4352-1:19	91 00	60	65	
				65	70	
nups//stan			/34be40907-3c4d-4	100-a/965	70	
Tensile strength, $R_{\rm m}$	lafbbb	5 5c6b9/iso-438	2-1-199 1			
N/mm², min.						
GS — Sand	250	220	240	000	040	
GM - Permanent mould	220	l l	i	200	210	
GZ — Centrifugal	230	310 330	000	200	210	
GC — Continuous	270	360	280 280	250	260	
oo commudas	210	300	200	250	260	
Elongation, percent after fracture, A %, min.			Commission of the property of the Authors when making the transport of the property of the pro			
GS - Sand	3		,	40	10	
GM — Permanent mould	2	3	7	13	12	
GZ — Centrifugal	4	2	 F	13	12	
GC — Centinugai	5	6	5 7	13	12	
U Continuous		0	·	13	12	

	Chemical composition, % (m/m)					
Chemical elements and properties						
	CuSn8Pb2	CuSn10P	CuSn12Pb2	CuPb5Sn5Zn5	CuSn7Pb7Zn3	
	Material pr	operties of test	bar	J		
0,2 % Proof stress, $R_{p0,2}$ N/mm ² , min.						
GS — Sand	130	130	130	90	100	
GM — Permanent mould	130	170	Market	90	100	
GZ — Centrifugal	130	170	150	100	120	
GC — Continuous	130	170	150	100	120	
Elastic modulus, E						
kN/mm² ≈	75	95	95	90	85	
Linear thermal expansion coefficient, $\alpha_I = 10^{-6} \text{ /K} \approx 10^{-6} \text{ /K}$	18	18	18	18	18	
10°°7K ≈	10	10	10	18	18	
Thermal conductivity, λ, at 15 °C W/(m·K) ≈	47	50	54	71	59	
Density , ϱ kg/dm ³ \approx	8,8	8,8	8,7	8,7	8,8	

- 1) For centrifugal and continuous casting, a tin content of 10,5 % to 13 % is admissible.
- 2) For continuous casting, the phosphorus content may be increased to a maximum of 1,5 % by agreement.
- 3) The phosphorus content shall be fixed by agreement.
- 4) For hardness testing, see ISO 4384-2.

iTeh STANDARD PREVIEW

(standards.iteh.ai)

ISO 4382-1:1991

https://standards.iteh.ai/catalog/standards/sist/34be40b7-3c4d-41d0-a79a-1afbbb55c6b9/iso-4382-1-1991

4.2 Test methods

4.2.1 Hardness test

Hardness testing shall be carried out in accordance with ISO 4384-1 and ISO 4384-2. If specimen size does not permit this, the test method may be agreed between supplier and purchaser. Acceptable minimum values shall then be as agreed

4.2.2 Tensile test

The tensile test shall be carried out in accordance with ISO 6892. If specimen sizes do not permit the use of standard test pieces, then test methods and mandatory values shall be as agreed between supplier and purchaser.

In the case of sand casting and permanent mould casting, the test bars are cast separately. In the case of continuous casting, the test bars are taken from the casting and, in the case of centrifugal casting, they may also be taken from the casting.

The test bars may be tested either as cast or machined.

Cast test bars shall have diameters between 12 mm and 25 mm; machined test bars shall have a finished diameter between 10 mm and 18 mm. In hetiaterdares itch machined material, the manufacturer's recase, a diameter of 14 mm ± 0,5 mm is recommended.

The designation is separated into the following types of casting:

GS - Sand

GM — Permanent mould

GZ — Centrifugal

GC — Continuous

The following tests may be requested by the purchaser:

R: Test of tensile strength

RA: Test of tensile strength and elongation

H: Test of Brinell hardness (on cast material or finished solid plain bearing)

EXAMPLE

Designation of the bearing metal made of continuous casting (GC) having the symbol CuPb10Sn10, when the test for tensile strength and elongation (RA) is to be carried out on the test bar:

Bearing metal ISO 4382 - GC - CuPb10Sn10 - RA

For finished machined material, the dimensions may be selected, for example, from ISO 4379.

commended allowances for machining should be ISO 43 added to the outside diameter and subtracted from https://standards.iteh.ai/catalog/standahe/inside.ediametera-41d0-a79a-

Designation and ordering informationbbb55c6b9/sp-4382-1-1991 The purchaser shall indicate whether a certificate of conformance is required.

Annex A

(informative)

Guide for uses of bearing metals and for the hardness of the mating bearing part (shaft)

Bearing alloys	Characteristics and principal uses ¹⁾	Minimum hardness of the shaft ²⁾
CuPb9Sn5	Soft copper-based bearing alloys suitable for moderate loads and moderate to high sliding velocities. Increasing the tin content increases the hardness and	250 HB
CuPb10Sn10	wear resistance.	
CuPb15Sn8	Soft copper-based bearing alloys suitable for moderate loads and moderate to high sliding velocities. Increasing the tin content increases the hardness and wear resistance. Tolerant of water lubrication.	250 HB
CuPb20Sn5	Soft copper-based bearing alloys suitable for moderate loads and moderate to high sliding velocities. Increasing the fin content increases the hardness and water resistance. Suitable for water lubrication.	200 HB
CuAl10Fe5Ni5	Very hard alloy for structural components under sliding conditions a79a- Suitable for marine environments Hardened shafts essential. Relatively poor embeddability.	55 HRC
CuSn8Pb2	Far non-critical applications with law to moderate leader adequate lubrication	300 HB
CuSn7Pb7Zn3	For non-critical applications with low to moderate loads; adequate lubrication.	SUU ND
CuSn10P	For hardened shafts with a combination of high load, high sliding velocity, impact	55 HRC
CuSn12Pb2	loading or pounding; when there is adequate lubrication and good alignment.	JJ III.C
CuPb5Sn5Zn5	For non-critical applications with low loads; adequate lubrication.	250 HB

¹⁾ Higher lead content improves the tolerance of poor alignment and intermittent lubrication.

²⁾ The shaft hardness should be four times higher than the bearing alloy hardness. The difference in hardness between bearing material and shaft material shall be such that welding of the bearing material under working conditions is safely avoided. The lubrication conditions have considerable influence on the selection of the shaft material, in particular on the hardness. The tabulated hardness values for shaft material are minimum values which are valid for most cases of application.