

Edition 2.0 2020-07 REDLINE VERSION

TECHNICAL SPECIFICATION

Utility-interconnected photovoltaic inverters – Test procedure for low under voltage ride-through measurements

Document Preview

IEC TS 62910:2020

https://standards.iteh.ai/catalog/standards/iec/0345ff4a-0d45-4f85-a639-e211f3d36338/iec-ts-62910-2020

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2020 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland

Tel.: +41 22 919 02 11 info@iec.ch www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 000 terminological entries in English and French, with equivalent terms in 16 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary

67 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR. S.IUTI. al

Edition 2.0 2020-07 REDLINE VERSION

TECHNICAL SPECIFICATION

Utility-interconnected photovoltaic inverters – Test procedure for low under voltage ride-through measurements

Document Preview

IEC TS 62910:2020

https://standards.iteh.ai/catalog/standards/iec/0345ff4a-0d45-4f85-a639-e211f3d36338/iec-ts-62910-2020

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 27.160

ISBN 978-2-8322-8736-1

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FC	OREWO	RD	4
1	Scop	e	7
2	Norm	native references	7
3	Term	s, definitions, symbols and abbreviated terms	7
	3.1	Terms, definitions and symbols	7
	3.2	Abbreviated terms	
4	Test	circuit and equipment	
	41	General	10
	4.1	Test circuit	10
	4.3	Test equipment	
	4.3.1	Measuring instruments	
	4.3.2	DC source	
	4.3.3	Short-circuit emulator	
	4.3.4	Converter based grid simulator	
5	Test		
	5 1	Test protocol	14
	5.2	Test curve	16
	5.3	Test procedure	10
	531	Pre-test	17
	532	No-load test 05./ Standards.iten.al)	17
	533		17
	5.3.4	Load test	
6	Asse	ssment criteria	
Δr	nex A ((informative) Circuit faults and voltage drops	19
ttps:/	/ x aadar	Eault two as log/standards/jec/0345ff4a-0d45-4f85-a639-e211f3d36338/jec-ts-	629101602
	A.1	Fault types	
	A.2	Ceneral	21 21
	A.2.1	Three phase short circuit fault	·····21 22
	Δ 2 3	Two-phase short-circuit fault with ground	22 22
	Δ 2 Δ	Two-phase short-circuit fault without around	22
	Δ25	Single-phase short-circuit fault with ground	23 24
Δr	nex B ((informative) Determination of critical performance values in LVRT	
te	sting		
	B.1	General	
	B.2	Drop depth ratio	
	B.3	Ride-through time	
	B.4	Reactive current	
	B.5	Active power	27
Ar	nnex C	(informative) Requirements of the UVRT curve	
	C.1	General	
	C.2	UVRT curve	
	C.3	Test points	
Bi	bliogram		29
	0 r	-	
Fi	aure 1 -	- Testing circuit diagram	10

Figure 2 – Short-circuit emulator	12
Figure 3 – Converter device example	14
Figure 4 – LVRT UVRT curve example	16
Figure 5 – Tolerance of voltage drop	17
Figure A.1 – Grid fault diagram	21
Figure A.2 – Diagram of voltage vector for three-phase short-circuit fault	22
Figure A.3 – Diagram of voltage vector of two-phase (BC) short-circuit fault with ground	23
Figure A.4 – Diagram of voltage vector of two-phase (BC) short-circuit fault	24
Figure A.5 – Diagram of voltage vector of single-phase (A) short-circuit fault with ground	25
Figure B.1 – Determination of reactive current output	27
Figure B.2 – Determination of active power recovery	27
Figure C.1 – The typical curve of UVRT	28
Table 1 – Accuracy of measurements	11
Table 2 – Fault type and switch status	13
Table 3 – Test specification for LVRT UVRT (Indicative)	15
Table A.1 – Short-circuit paths for different fault types	19
Table A.2 – Amplitude and phase changes in three-phase short-circuit fault	22
Table A.3 – Amplitude and phase changes in two-phase (BC) COLAR	23
Table A.4 – Amplitude and phase changes in two-phase (BC) short-circuit fault	24
Table A.5 – Amplitude and phase changes in single-phase (A) -short-circuit fault with ground	25

INTERNATIONAL ELECTROTECHNICAL COMMISSION

UTILITY-INTERCONNECTED PHOTOVOLTAIC INVERTERS – TEST PROCEDURE FOR LOW UNDER VOLTAGE RIDE-THROUGH MEASUREMENTS

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies. 10:2020
- 6) All users should ensure that they have the latest edition of this publication. e2113d36338/jec-ts-62910-2020
 - 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
 - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
 - 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

This redline version of the official IEC Standard allows the user to identify the changes made to the previous edition. A vertical bar appears in the margin wherever a change has been made. Additions are in green text, deletions are in strikethrough red text.

The main task of IEC technical committees is to prepare International Standards. In exceptional circumstances, a technical committee may propose the publication of a Technical Specification when

- the required support cannot be obtained for the publication of an International Standard, despite repeated efforts, or
- the subject is still under technical development or where, for any other reason, there is the future but no immediate possibility of an agreement on an International Standard.

Technical Specifications are subject to review within three years of publication to decide whether they can be transformed into International Standards.

IEC TS 62910, which is a technical specification, has been prepared by IEC technical committee 82: Solar photovoltaic energy systems.

This second edition cancels and replaces the first edition issued in 2015, and constitutes a technical revision.

It remains a TS because it is limited to providing recommended practices for UVRT testing in the context of non-uniform grid-codes lacking international consensus, and the rapid development of test technology in recent years.

The main technical changes with regard to the previous edition are as follows:

5.2	NOTE The example shows two types of points on the UVRT curve: the lowest point and the inflection point. Tests must be carried out at both types of points	The example shows three types of points on the UVRT curve: the highest point, the lowest point and the inflection point. Tests shall be carried out at above types of points.	
5.3.1	Prior to the fault simulation tests, the EUT should run in normal operating mode. The selected UVRT curve should be used to identify voltage drop points, including the lowest point and the inflection point,	JT Prior to the fault simulation tests, the EUT should run in normal operating mode. The selected UVRT curve should be used to identify voltage drop points, including the highest point, the lowest point and the inflection point,	

The text of this Technical Specificationis based on the following documents:

Draft TS	Report on voting	
82/1607/DTS	82/1640A/RVDTS	

Full information on the voting for the approval of this Technical Specification can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed, •
- withdrawn, •
- replaced by a revised edition, or Document Preview
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

UTILITY-INTERCONNECTED PHOTOVOLTAIC INVERTERS – TEST PROCEDURE FOR-LOW UNDER VOLTAGE RIDE-THROUGH MEASUREMENTS

1 Scope

This document provides a test procedure for evaluating the performance of <u>Low</u> Under Voltage Ride-Through (<u>LVRT</u> UVRT) functions in inverters used in utility-interconnected Photovoltaic (PV) systems.

This document is most applicable to large systems where PV inverters are connected to utility high voltage (HV) distribution systems. However, the applicable procedures may also be used for low voltage (LV) installations in locations where evolving <u>LVRT</u> UVRT requirements include such installations, e.g. single-phase or 3-phase systems.

The assessed <u>LVRT</u> UVRT performance is valid only for the specific configuration and operational mode of the inverter under test. Separate assessment is required for the inverter in other factory or user-settable configurations, as these may cause the inverter <u>LVRT</u> UVRT response to behave differently.

The measurement procedures are designed to be as non-site-specific as possible, so that LVRT UVRT characteristics measured at one test site, for example, can also be considered valid at other sites.

This document is for testing of PV inverters, though it contains information that may also be useful for testing of a complete PV power plant consisting of multiple inverters connected at a single point to the utility grid. It further provides a basis for utility-interconnected PV inverter numerical simulation and model validation.

https://standards.iteh.ai/catalog/standards/iec/0345ff4a-0d45-4f85-a639-e211f3d36338/iec-ts-62910-2020

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 61400-21:2008, Wind turbines – Part 21: Measurement and assessment of power quality characteristics of grid connected wind turbines

IEC TS 61836, Solar photovoltaic energy systems – Terms, definitions and symbols

3 Terms, definitions, symbols and abbreviated terms

3.1 Terms, definitions and symbols

For the purposes of this document, the terms and definitions in IEC TS 61836 and symbols the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

• IEC Electropedia: available at http://www.electropedia.org/

• ISO Online browsing platform: available at http://www.iso.org/obp

3.1.1

drop depth

magnitude of voltage drop during a fault or simulated fault, as a percentage of the nominal supply voltage

3.1.2

double drop

sudden decline of the nominal voltage to a value below 90 % of the voltage of point of common coupling (PCC), followed after a short time by a voltage recovery, which happened happens twice

Note 1 to entry: Voltage changes which do not reduce the voltage to below 90 % of the voltage of PCC are not considered to be voltage drops.

3.1.3

equipment under test

EUT

equipment on which these tests are performed and refers to the utility-interconnected PV inverter. During test period, EUT is connected with PV simulator instead of real PV modules on the direct current (DC) side, while alternating current (AC) side is connected with grid

3.1.4

IT system

IT power system has all live parts isolated from earth or one point connected to earth through an impedance. The exposed-conductive-parts of the electrical installation are earthed independently or collectively or to the earthing of the system

[SOURCE: IEC 60364-1:2005, 312.2.3]

3.1.4 I_n

IEC TS 62910:2020

tipout reactive current of EUT_{lards/iec}/0345ff4a-0d45-4f85-a639-e2116d36338/iec-ts-62910-2020

3.1.5

low under voltage ride through

LVRT UVRT

capability of an inverter to continue generating power to connected loads during a limited duration loss or drop of grid voltage

3.1.7

maximum MPP voltage

maximum voltage at which the EUT can convert its rated power under MPPT conditions

[SOURCE: EN 50530:2010]

3.1.6

maximum power point tracking MPPT

control strategy of operation at maximum power point or nearby

3.1.9

minimum MPP voltage

minimum voltage at which the EUT can convert its rated power under MPPT conditions

[SOURCE: EN 50530:2010]

3.1.7

 N_{EUT} access point of the EUT during the test

3.1.8

P_N rated power of EUT

3.1.9 point of common coupling PCC

point of a power supply network, electrically nearest to a particular load, at which other loads are, or may be, connected

Note 1 to entry: These loads can be either devices, equipment or system, or distinct customer's installations.

Note 2 to entry: In some applications, the term "point of common coupling" is restricted to public networks.

[SOURCE: IEC 60050-161:1990, 161-07-15]

3.1.10

proportionality constant K

K-factor

voltage support of EUT in accordance with the voltage drops. the K-factor is to be specified by the EUT manufacturer.

the K-factor is to be supplied by the EUT manufacturer meeting additional requirements imposed by national standards and/or local codes

3.1.11

PV array simulator

simulator that has I-V characteristics equivalent to a PV array

3.1.15

EC TS 62910:2020

Ip PV.simulator MPP.voltageindards/iec/0345ff4a-0d45-4f85-a639-e211f3d36338/iec-ts-62910-2020 *U_{MPP, PVS}*

MPP voltage of the setting PV curve that is provided by the PV simulator

3.1.12

 S_{EUT} apparent short-circuit power at N_{EUT}

 $S_{\text{EUT}} = I_{\text{sc}} \times U_{\text{N}}, I_{\text{sc}}$ refer to short-circuit current at N_{EUT} during the no-load test

3.1.13

single drop

sudden decline of the nominal voltage to a value below 90 % of the voltage of PCC, followed after a short time by a voltage recovery, which happened happens once

Note 1 to entry: Voltage changes which do not reduce the voltage to below 90 % of the voltage of PCC are not considered to be voltage drops.

3.1.14

 Z_{grid}

grid short-circuit impedance value of the <u>MP1</u> main point (MP) 1 (see Figure 1)

3.1.15

Zi

impedance value between the fault point and PCC

3.1.16

 $Z_{
m p}$ impedance value between the fault point and EUT

3.2 Abbreviated terms

- AC alternating current
- A/D analog to digital
- DC direct current
- EUT equipment under test
- ΗV high voltage
- LV low voltage
- MV middle voltage
- ΡV photovoltaic
- RMS root mean square
- UVRT under voltage ride through

Test circuit and equipment 4

4.1 General

The circuits and equipment described in this clause are developed to allow tests that simulate the full range of anticipated grid faults, including:

- Single phase to ground fault (any phase).
- Two phase isolated fault, between any two phases.
- Two phase grounded fault, involving any two phases.
- Three phase short-circuit fault. .

A full discussion of these faults and the resulting impact on voltage magnitude and phase angles is included in Annex A.

The short circuit emulator and grid simulator described in 4.3.3 and 4.3.4 are informative examples and are not intended to restrict design flexibility. Other designs may be used to achieve equivalent test functionality.

4.2 **Test circuit**

The LVRT UVRT test circuit includes a DC source, the EUT, a grid fault simulator and the grid. A PV simulator (or PV array) provides input energy for the EUT. The output of the EUT is connected to the grid via a grid fault simulator, as shown in Figure 1.

NOTE MP1 is the measurement point between the grid and the grid fault simulator; MP2 is the measurement point at the high voltage side of the transformer; MP3 is the measurement point at the low voltage side of the transformer.

Figure 1 – Testing circuit diagram

IEC TS 62910:2020 RLV © IEC 2020 - 11 -

4.3 Test equipment

4.3.1 Measuring instruments

Waveforms shall be measured by a device with memory function, for example, a storage or digital oscilloscope, or a high speed data acquisition device. Accuracy of the oscilloscope or data acquisition system should be at least 0,2 % of full scale. The analogue to A/D of the measurement device shall have at least 12 bit resolution (in order to maintain the required measurement accuracy).

Voltage transducers (or Voltage transformers) and current transducers (or current transformers) are the required sensors for measurement. The accuracy of the transducers should be 0,5 % of full scale or better. It is necessary to select the transducer measuring range depending on the normal value of the signal to be measured. The selected measuring range shall not exceed 150 % of the normal value of the measured signal. The transducer accuracy requirements are shown in Table 1.

Measurement device	Accuracy	
Data acquisition device	0,2 %	full scale
Voltage transducer transformer	0,5 %	full scale
Current transducer transformer	0,5 %	full scale

Table 1 – Accuracy of measurements

Ieh Standards

4.3.2 DC source (https://standards.iteh.ai

A PV array, PV array simulator or controlled DC source with PV characteristics may be used as the DC power source to supply input energy for the <u>LVRT</u> UVRT test. As the EUT input source, the DC power source shall be capable of supplying the EUT maximum input power and other power levels during the test, at minimum and maximum input operating voltages of the EUT.

The PV simulator should emulate the current/voltage characteristic of the PV module or PV array for which the EUT is designed. The response time of a PV simulator should not be

Ionger than the MPP tracking response time of EUT. For a EUT under test without galvanic isolation between the DC side and AC side, the output

of the PV simulator shall not be earthed.

The equivalent capacitance between the output of the PV simulator and earth should be as low as possible in order to minimize the impact on the EUT.

A PV array used as the EUT input source shall be capable of matching the EUT input power levels specified by the test conditions. It is necessary to select a period of time in which the solar irradiance is stable and does not vary more than 5 % during the test.

4.3.3 Short-circuit emulator

As part of the grid simulator device, the short-circuit emulator is used to create the voltage drops due to short-circuits between the two or three phases, or between one or two phases to ground, via the impedance network Z_1 and Z_2 as shown in the test device layout in Figure 2.

Figure 2 – Short-circuit emulator

The impedance Z_1 is used to limit the effect of the short circuit on the utility service that powers the test circuit. The sizing of Z_1 shall therefore account for all test sequences to be performed and limit the short-circuit current taken from the grid to values that do not cause an excessive reduction of the grid voltage. Considering an acceptable voltage reduction of at most 5 % when performing the test, the minimum value of Z_1 shall be at least 20 × Z_{Grid} ,

where Z_{Grid} is the grid short-circuit impedance measured at the test circuit connection point.

To ensure that the test is realistic, however, the apparent short-circuit power (S_{EUT}) available at the EUT connection node N_{EUT} should be at least equal to $3 \times Pn$, where Pn is the rated power of the EUT (minimum value $S_{EUT} > 3 \times Pn$, recommended $S_{EUT} = 5$ to $6 \times Pn$ $5 \times Pn < S_{EUT} < 6 \times Pn$). This means during the short-circuit tests, the contribution of current through Z_1 and Z_2 from the grid remains dominant compared to the current contributed by the EUT. In this way, the inverter current does not create a significant voltage rise for the duration of the test relative to the no-load drop.

The two conditions described above define the minimum and maximum limits of Z_1 . The two conditions combined also define the limit criteria for the choice of a grid infrastructure suitable for performing the test with the impedance circuit. If the grid infrastructure cannot meet above requirements, an alternative test circuit utilizing a back-to-back converter is allowed, as shown in Figure 2 may be added to reduce the grid short-circuit impedance Z_{Grid} .