

SLOVENSKI STANDARD SIST ISO 4391:1995

01-avgust-1995

:`i]XbUhY\b]_U'!<]XfUj`]_U'!`fdU_Yžachcf']']b'jUf]Uhcf']'!`8Y2jb]Wj^Y`dUfUaYhfcj`]b b'j\cjY`f_cjbY`cnbU_Y

Hydraulic fluid power -- Pumps, motors and integral transmissions -- Parameter definitions and letter symbols

iTeh STANDARD PREVIEW

Transmissions hydrauliques -- Porpes moteurs et variateurs -- Définitions des grandeurs et lettres utilisées comme symboles

SIST ISO 4391:1995 Ta slovenski standard je istoveten z: Ta slovenski standard je istoveten z:

<u>ICS:</u>

23.100.10 Pã妿ç¦ã } ^Á¦] æt\ ^Áşi Á; [dː hã: Pumps and motors

SIST ISO 4391:1995

en

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST ISO 4391:1995</u> https://standards.iteh.ai/catalog/standards/sist/dace984f-abde-45f3-a69dfdf6cd6cabd0/sist-iso-4391-1995

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION+MEXDYHAPODHAR OPFAHИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ+ORGANISATION INTERNATIONALE DE NORMALISATION

Hydraulic fluid power — Pumps, motors and integral transmissions — Parameter definitions and letter symbols

Transmissions hydrauliques – Pompes, moteurs et variateurs – Définitions des grandeurs et lettres utilisées comme symboles

Second edition – 1983-06-15h STANDARD PREVIEW (standards.iteh.ai)

<u>SIST ISO 4391:1995</u> https://standards.iteh.ai/catalog/standards/sist/dace984f-abde-45f3-a69dfdf6cd6cabd0/sist-iso-4391-1995

UDC 621.8.032 : 621.65/.67

Ref. No. ISO 4391-1983 (E)

Descriptors : fluid power, hydraulic fluid power, hydraulic equipment, pumps, hydraulic motors, hydraulic variable speed drive units, definitions, symbols, letters (symbols).

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO member bodies). The work of developing International Standards is carried out through ISO technical committees. Every member body interested in a subject for which a technical committee has been set up has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council.

International Standard ISO 4391 was developed by Technical Committee ISO/TC 131EVIEW Fluid power systems. (standards.iteh.ai)

This second edition was submitted directly to the ISO Council, in accordance with clause 6.11.2 of part 1 of the Directives for the technical work of ISO.311 cancels and replaces the first edition (i.e. ISO.4391-1982), which had been approved by the f-abde-45f3-a69d-member bodies of the following countries : df6cd6cabd0/sist-iso-4391-1995

Australia	Finland	Netherlands
Austria	France	Norway
Belgium	Germany, F.R.	Poland
Bulgaria	India	Romania
Canada	Italy	Spain
Chile	Japan	Sweden
Czechoslovakia	Libyan Arab Jamahiriya	USSR

The member bodies of the following countries had expressed disapproval of the document on technical grounds :

United Kingdom USA

© International Organization for Standardization, 1983 •

Printed in Switzerland

Contents

t

0	Introduction	1
1	Scope	1
2	Field of application	1
3	References	1
4	Definitions	1
5	Guidelines for the use of letter symbols and suffixes	1
iTeh ST ₆	Identification statement	2
(sţ a	Letter symbols for characteristics	2
8	Suffixes for symbols for characteristics	3
https://standards.iteh.ai	/catalog/standards/sist/dace984f-abde-45f3-a69d- Examples for the use of symbols with suffix for general characteristics	5
10	Examples for the use of symbols with suffix for pumps and motors	5
11	Examples for the use of symbols with suffix for integral transmissions	8
12	Definition of terms without symbols	9

Page

SIST ISO 4391:1995

iTeh STANDARD PREVIEW (standards.iteh.ai) This page intentionally left blank

<u>SIST ISO 4391:1995</u> https://standards.iteh.ai/catalog/standards/sist/dace984f-abde-45f3-a69dfdf6cd6cabd0/sist-iso-4391-1995

components --

Hydraulic fluid power — Pumps, motors and integral transmissions — Parameter definitions and letter symbols

symbols.

ISO 5598,

Vocabulary.¹⁾

and suffixes

Definitions

Fluid

nower

For definitions of terms used, see ISO 5598.

5 Guidelines for the use of letter symbols

0 Introduction

In hydraulic fluid power systems, power is transmitted and controlled through a liquid under pressure within an enclosed circuit. Pumps are components which convert rotary mechanical power into fluid power. Motors are components which convert fluid power into rotary mechanical power. Transmissions convert a unidirectional variable speed shaft input to a unidirectional or bidirectional variable speed output.

1 Scope

This International Standard describes and systematically defines the principal technical characteristics of hydraulic pumps, motors and integral transmissions.

It allots letter symbols to these characteristics, and indicates **S.iteh.ai**) how they can be more clearly defined by suffixes corresponding to particular cases. It also lists an analysis of <u>parameter 4391:1995</u> dimensions. https://standards.iteh.ai/catalog/standards/sts52aceSoff-abbd-forB-adbd-

> fdf6cd6cabd0/sist-iso-4391-1995 See clause 8 for suffixes for letter symbols.

PREVIEW

5.1 Letter symbols

2 Field of application

The determination of exact descriptions with letter symbols, dimensions and definitions should create a single and unambiguous terminology for hydraulic pumps, motors and integral transmissions.

It is not yet possible to define a terminology absolutely valid in all cases concerning life, material fatigue or wear with respect to conditions of operation. This field is to be treated with reserve and should undergo precise study in each particular case.

3 References

ISO 31/0, General principles concerning quantities, units and symbols.

ISO 31/1, Quantities and units of space and time.

ISO 31/2, Quantities and units of periodic and related phenomena.

ISO 31/3, Quantities and units of mechanics.

ISO 31/4, Quantities and units of heat.

1) At present at the stage of draft.

5.3 Letter symbols and suffixes

The use of symbols is self-explanatory but in combination with suffixes a large variety of possibilities can be developed. Therefore, the following guidelines are required to avoid the creation of too many different symbol-suffix combinations for the same subject.

ISO 1219, Fluid power systems and components - Graphic

systems and

5.3.1 Only if necessary for clarification are letters to be placed at the top of the symbols (P, M, T) to indicate the unit to be used, i.e. when equations are to be developed and compared for pumps, motors and transmissions.

5.3.2 If two or more suffixes are required, use a comma between them.

- 5.3.3 First priority : 0, 1, 2
- **5.3.4** Second priority : 3, b, d, e, g, h, hm, i, m, s, t, v, φ
- 5.3.5 Third priority : c, dry, ex, f, fi, in, k, p, n
- 5.3.6 Fourth priority : am, aux, lc, r, st

5.3.7 Last priority : a, ma, mi, max, min

5.3.8 See clauses 8, 9 and 10 for examples of the use of symbols with suffixes.

5.4 Terms without symbols

See clause 12 for definition of terms without symbols.

6 Identification statement (Reference to this International Standard)

Use the following statement in test reports, catalogues and sales literature when electing to comply with this International Standard :

"Parameter definitions and letter symbols in accordance with ISO 4391, Hydraulic fluid power – Pumps, motors and integral transmissions – Parameter definitions and letter symbols."

7 Letter symbols for characteristics

7.1 Alphabetical sequence of Latin and Greek letters for symbols

Reference	Description	Symbol	Dimension	Definition or explanation
7.1.1	Bulk modulus	K	ML ⁻¹ T ⁻²	The relationship of applied stress and volumetric strain produced when stress is applied uniformly to all sides of a body.
				It is the reciprocal of compressibility.
7.1.2	Force	F	MLT ⁻²	_
7.1.3	Frequency	oh ^f ST		n ddeview
7.1.4	Moment of inertia	(st	andards	Value calculated from the moments of inertia of the moving parts
7.1.5	Mass	m	М	-
7.1.6	Rotational frequency (speed) https://s	n tandards.iteh.a	<u>SIST ISO 43</u> i/catalog/standard	01:1995 The number of revolutions of the drive shaft in unit time s/sist/dace984Fabde-4513-a69d-
7.1.7	Power	Р	ML ² T ⁻³	-
7.1.8	Pressure	р	ML ⁻¹ T ⁻¹	Static pressure at a stated point
7.1.9	Mass flow rate	q_m	MT ^{- 1}	The mass of a fluid crossing the transverse plane of a flow path per unit time
7.1.10	Volume flow rate	q_V	L ³ T ^{- 1}	The volume of a fluid crossing the transverse plane of a flow path per unit time
7.1.11	Stiffness	S	ML ² T ^{- 2}	Ratio of the variation of torque applied to a shaft and the variation of the angular position of the shaft
7.1.12	Torque	Т	ML ² T ^{- 2}	-
7.1.13	Time	t	Т	-
7.1.14	Instantaneous displacement	V	L ³	Swept volume at a given shaft position
7.1.15	Swept volume	V	L ³	The volume of a theoretically incompressible fluid that would be displaced by a complete stroke, cycle or revolution $V = \int_{0}^{2\pi} v d\varphi$
7.1.16	Speed ratio	Z	1	Ratio of speed of two different units
7.1.17	Volume coefficient of thermal expansion	α	Θ ^{−1}	_
7.1.18	Degree of irregularity for parameter <i>X</i>	δΧ	1	$\delta X = \frac{X_{\text{max}} - X_{\text{min}}}{X_{\text{mi}}}$, where X is any parameter
1			1	1

Reference	Description	Symbol	Dimension	Definition or explanation
7.1.19	Position of setting	é	1	For variable units, the position of the control device is defined by the ratio between the theoretical swept volume V_i at a given adjustment and the maximum theoretical swept volume $V_{i, \max}$ $\epsilon = \frac{V_i}{V_{i, \max}}$
7.1.20	Efficiency	η	1	_
7.1.21	Temperature	θ	Θ	
7.1.22	Angular velocity	ω	T - 1	The number of radians of a shaft in unit time $\omega = 2\pi n$

7.2 List of other symbols

Reference	Description	Symbol	Dimension	Definition or explanation
7.2.1	Direction of rotation :			From the point of view of an observer looking at the end
	– clockwise	R	1	of the shaft
	– anti-clockwise	L	1	

8 Suffixes for symbols for characteristics

(standards.iteh.ai) 8.1 Alphabetical sequence of Latin and Greek letters for suffixes

Reference	Description	Suffix	1 ISO 4391:1995 Definition or explanation and examples	
8.1.1	Acceptable conditions	fdf 0 cd6ca	Conditions which permit a tolerable standard of performance and life	
8.1.2	Ambient	am	Surrounding	
8.1.3	Auxiliary	aux	_	
8.1.4	Adjustment	b		
8.1.5	Cyclic stabilized conditions	С	Conditions in which the relevant parameters vary in a repetitive manner, similar conditions repeating at regular intervals $X = \begin{bmatrix} X \\ Stabilizing \\ period \end{bmatrix}$ Cyclic operation	
8.1.6	Drainage	d		
8.1.7	Indication of dry	dry	For values for which the fluid impact is not to be considered	
8.1.8	Measured value	e	Obtained by direct measurement or by calculation based on measurements	
8.1.9	External	ex	_	
8.1.10	Fluid	f	_	
8.1.11	Filling	fi	Indicating values due to imperfect filling of pump	