

Edition 1.0 2023-12

TECHNICAL REPORT

Dynamic characteristics of inverter-based resources in bulk power systems – Part 3: Fast frequency response and frequency ride-through from inverter-based resources during severe frequency disturbances

Document Preview

IEC TR 63401-3:2023

https://standards.iteh.ai/catalog/standards/iec/30211e16-d065-40b9-9557-9c7cbda272d7/iec-tr-63401-3-2023

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2023 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Secretariat 3, rue de Varembé CH-1211 Geneva 20 Switzerland

Tel.: +41 22 919 02 11 info@iec.ch www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

IEC Products & Services Portal - products.iec.ch

Discover our powerful search engine and read freely all the publications previews. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 300 terminological entries in English and French, with equivalent terms in 19 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

Edition 1.0 2023-12

TECHNICAL REPORT

Dynamic characteristics of inverter-based resources in bulk power systems – Part 3: Fast frequency response and frequency ride-through from inverterbased resources during severe frequency disturbances

Document Preview

IEC TR 63401-3:2023

https://standards.iteh.ai/catalog/standards/iec/30211e16-d065-40b9-9557-9c7cbda272d7/iec-tr-63401-3-2023

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 27.160; 27.180; 29.020

ISBN 978-2-8322-8000-3

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FC	REWO	RD	6
IN	TRODU	CTION	8
1	Scop	e	9
2	Norm	ative references	9
3	Term	s, definitions and abbreviated terms	9
	3.1	Terms and definitions	9
	3.2	Abbreviated terms	9
4	Defin	ition of fast frequency response (FFR)	11
	4.1	General	11
	4.2	Existing usage of term FFR	11
	4.2.1	FFR in Australia and Texas	11
	4.2.2	FFR and synthetic inertia in European Network of Transmission System Operators for Electricity (ENTSO-E)	15
	4.2.3	FFR and synthetic inertia in EirGrid/SONI	16
	4.2.4	The enhanced frequency response and enhanced frequency control capability in the UK	18
	4.2.5	FFR in North American Electric Reliability Council (NERC) and North America	18
	4.3	Definition of FFR given by CIGRE JWG C2/C4.41	18
	4.4	Recommended definition of fast frequency response (FFR)	19
	4.4.1	Clear definition	19
	4.4.2	Impact mechanism on system frequency	19
	4.5	Description of the relationship among synchronous inertia response, fast frequency response, and primary frequency response	20
	4.5.1	Relationship between synchronous inertia response and fast frequency response	20
	4.5.2	Relationship between fast frequency response and primary frequency response	01-3-202 <mark>21</mark>
	4.5.3	Relationship between synchronous inertia response and primary frequency response	21
5	Syste	em needs and conditions where fast frequency response is warranted	22
	5.1	Higher ROCOF and lower nadir	22
	5.1.1	General	22
	5.1.2	Higher ROCOF	23
	5.1.3	Worse nadir	24
	5.1.4	Simulation study	25
	5.1.5	Blackout in Great Britain power grid on 9 August 2019	26
	5.2	Large fluctuation of system frequency in power system operation	29
	5.2.1		29
	5.2.2	Frequency regulation scheme	29
	5.2.3	Relatively large load fluctuation	30
6	0.2.4 Porfo	Relatively weak and slow PFR	3U 31
0	Fenc	The response time of EED	JI 24
	0.1	The response time of FFK	ປີ ລວ
	0.Z	The response characteristics and maximum response capacity of FFR	32
	0.5	response in China	34
	6.3.1	General	34

IEC TR 63401-3:2023 © IEC 2023 - 3 -

	6.3.2	Engineering construction	34
	6.3.3	Test practice and performance	35
7	Avail respo	able technologies, controls, and tuning considerations for fast frequency onse and primary frequency response	35
	7.1	Available technologies for fast frequency response	
	7.1.1	Technology capabilities for FFR service	
	7.1.2	Wind turbines	
	7.1.3	Solar PV	
	7.1.4	Battery energy storage	
	7.1.5	HVDC	40
	7.2	Available controls for fast frequency response	41
	7.2.1	General	41
	7.2.2	Additional FFR control for grid-following converter	41
	7.2.3	Grid-forming converter control	42
	7.3	Tuning considerations for fast frequency response and primary frequency response	44
8	Test capa	methods for verifying turbine-level or plant-level fast frequency response bility	45
	8.1	General	45
	8.2	Selection of test equipment	45
	8.3	Test wiring method.	45
	8.4	Selection of measuring conditions	46
	8.5	Step frequency disturbance test	47
	8.6	Slope frequency disturbance test	47
	8.7	Actual frequency disturbance simulation test.	48
	8.8	Actual frequency disturbance simulation test	48
9	Rate ROC	of-change-of-frequency (ROCOF) definition and withstand capability for high OF conditions	49
	9.1	Definition of rate of change of frequency (ROCOF)	³⁴⁰¹ 49 ⁻²⁰
	9.2	Ride-through (withstand) capability for high ROCOF conditions	51
10) Test	specifications for high ROCOF conditions	53
	10.1	Performance specification	53
	10.1.	1 Effective and operating ranges	
	10.1.	2 Accuracy related to the characteristic quantity	
	10.1.	3 Start time for rate of change of frequency (ROCOF) function	
	10.1	4 Accuracy related to the operate time delay setting	
	10.1.	5 Voltage input	
	10.2	Functional test methodology	
	10.2	1 General	
	10.2.	2 Determination of steady-state errors related to the characteristic quantity	
	10.2	3 Determination of the start time	63
	10.2	4 Determination of the accuracy of the operate time delay	65
	10.2	5 Determination of disengaging time	
11	Mode	elling capabilities and improvements to dynamic models for fast frequency	67
		General	67
	11.2	Dynamic models for fast frequency response and related high ROCOF conditions	68
	11.2	1 Dynamic models of whole power systems	
		,	

11.2.2 Simplification of dynamic models	73
11.3 Modelling improvements	75
Bibliography	77
Figure 1 – Proposed response times by ERCOT as of 2014	12
Figure 2 – Time elements of FFR	14
Figure 3 – Impact mechanism on system frequency by FFR	20
Figure 4 – System frequency in response to a large generation trip	22
Figure 5 – Frequency characteristics under the same disturbance with various inverter-	26
Figure 6 – Frequency response in blackout in Great Britain power grid on 9 August 2019	27
Figure 7 – System frequency fluctuation under secondary frequency regulation due to	20
Figure 8 – Assignment of different modulations for quasi-steady-state frequency	30
Figure 9 Controlled contribution of electrical power provided by POCOE based EEP	33
Figure 10 The controlled contribution of electrical power provided by ROCOT-based 11 R	
FFR	34
Figure 11 – Scheme of the transfer function of ROCOF-based FFR for grid-following converters	41
Figure 12 – Scheme of the transfer function of deviation-based FFR for grid-following converters	42
Figure 13 – Schematic of the droop control of deviation-based FFR for grid-forming converters	43
Figure 14 – Time elements of FFR	44
Figure 15 – Test wiring diagram	46
Figure 16 – Test slope curve for ROCOF-based FFR	48
Figure 17 – Schematic of increased ROCOF with increased renewable generation	50
Figure 18 – The response of IBRs for frequency slope change (change from 45 Hz to 55 Hz in 1 s)	51
Figure 19 – The response of IBRs for frequency step change of 1 Hz	52
Figure 20 – Operate time and operate time delay setting	54
Figure 21 – Example of test method for positive ROCOF function	56
Figure 22 – Test method for measurement of reset value for ROCOF functions: example for positive ROCOF function	59
Figure 23 – Start time measurement of positive ROCOF function	63
Figure 24 – Operate time delay measurement of positive ROCOF	65
Figure 25 – Disengaging time measurement of ROCOF	66
Figure 26 – Second generation BPS renewable energy system (RES) modules	69
Figure 27 – Load modelling practices	70
Figure 28 – WECC CLM	72
Figure 29 – Electronically interfaced load model	72
Figure 30 – Distributed energy resource model	73
Figure 31 – The traditional SFR model	73
Figure 32 – Improved model in light of ROCOF-based FFR and deviation-based FFR	75

Figure 33 – Electrical power from wind turbines for different combinations of wind power control strategies under 20 % wind power penetration in system
Table 1 – Frequency response times of FFR 13
Table 2 – Frequency response in Great Britain power grid on 9 August 2019
Table 3 – Summary of response times in different countries and regions
Table 4 – Summary of response times for inverter-based resources 31
Table 5 – Typical ranges of control parameters of FFR 34
Table 6 – Inertia response and fast frequency regulation performance
Table 7 – Input and output of a data collection point
Table 8 – Test conditions for fast frequency response of renewable energy power plant46
Table 9 – Stepped frequency disturbance test 47
Table 10 – Test conditions for actual frequency disturbance simulation
Table 11 – Example of effective and operating ranges for over- and under-frequencyprotection53
Table 12 – Example of effective and operating ranges for ROCOF protection
Table 13 – Test points for ROCOF function
Table 14 – Reporting of ROCOF accuracy 58
Table 15 – Test points of reset value for ROCOF function
Table 16 – Reporting of the reset value for ROCOF function
Table 17 – Test points for minimum frequency protection function start time
Table 18 – Test points to measure operate time delay 65
Table 19 – Test points for accuracy of the operate time delay
Table 20 – Test points of disengaging time for ROCOF function

https://standards.iteh.ai/catalog/standards/iec/30211e16-d065-40b9-9557-9c7cbda272d7/iec-tr-63401-3-2023

- 6 -

INTERNATIONAL ELECTROTECHNICAL COMMISSION

DYNAMIC CHARACTERISTICS OF INVERTER-BASED RESOURCES IN BULK POWER SYSTEMS –

Part 3: Fast frequency response and frequency ride-through from inverter-based resources during severe frequency disturbances

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC shall not be held responsible for identifying any or all such patent rights.

IEC TR 63401-3 has been prepared by subcommittee 8A: Grid Integration of Renewable Energy Generation, of IEC technical committee 8: System aspects of electrical energy supply. It is a Technical Report.

The text of this Technical Report is based on the following documents:

Draft	Report on voting
8A/130/DTR	8A/150/RVDTR

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this Technical Report is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/standardsdev/publications.

A list of all parts in the IEC 63401 series, published under the general title *Dynamic characteristics of inverter-based resources in bulk power systems*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn, or
- revised.

IMPORTANT – The "colour inside" logo on the cover page of this document indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

-2023

INTRODUCTION

Primary frequency response (PFR) denotes the autonomous reaction of system resources to change in frequency. In most power systems, the main contributor to PFR is the governor response of synchronous generation. In the systems with less synchronous generators, the system inertia is relatively low and PFR capability is relatively weak and slow, so the system frequency tends to change dramatically in severe power imbalance disturbances, which will trigger under-frequency load shedding (UFLS) or OPC (over speed protection control) of synchronous generators possibly. Therefore, it is an effective coping method to introduce some new frequency responses in the systems with high penetration of inverter-based resources.

This document studies fast frequency response (FFR) as a potential mitigation option in maintaining grid security during severe frequency disturbances. Broadly, FFR is some kind of rapid injection of electrical power from inverter-based resources or relief of loads that helps arrest the decline of system frequency during severe disturbances.

iTeh Standards (https://standards.iteh.ai) Document Preview

IEC TR 63401-3:2023

https://standards.iteh.ai/catalog/standards/iec/30211e16-d065-40b9-9557-9c7cbda272d7/iec-tr-63401-3-2023

DYNAMIC CHARACTERISTICS OF INVERTER-BASED RESOURCES IN BULK POWER SYSTEMS –

Part 3: Fast frequency response and frequency ride-through from inverter-based resources during severe frequency disturbances

1 Scope

This part of IEC 63401, which is a Technical Report, provides an insight into the various forms of fast frequency response and frequency ride-through techniques that involve inverter-based generation sources (mainly wind and PV) in a bulk electrical system.

This document first focuses on extracting the clear definition of FFR from different references around the world, while studying the mechanism of FFR acting on system frequency and the unique features of FFR. It then compares various kinds of frequency response and demonstrates the relationship among synchronous inertia response, fast frequency response, and primary frequency response. Several system needs and conditions where FFR is suitable are identified. This document also focuses on the performance objectives, practicality and capabilities of various non-synchronous resources, and discusses the test methods for verifying FFR capability at different levels. Finally, it focuses on the ROCOF issues and on the robust performances of FFR.

2 Normative references ://standards.iteh.ai)

There are no normative references in this document.

3 Terms, definitions and abbreviated terms ²⁰²³

https://standards.iteh.ai/catalog/standards/iec/30211e16-d065-40b9-9557-9c7cbda272d7/iec-tr-63401-3-2023

3.1 Terms and definitions

No terms and definitions are listed in this document.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

3.2 Abbreviated terms

Abbreviated term	Description
AEMO	Australian Energy Market Operator
AGC	automatic generation control
BESS	battery energy storage systems
BMS	battery management system
BPS	bulk power system

	Abbreviated term	Description
	CLM	composite load model
	CLOD	complex load model
	DFIG	doubly fed induction generator
	EFCC	enhanced frequency control capability
	EFR	enhanced frequency response
	ENTSO-E	European Network of Transmission System Operators for Electricity
	ERCOT	Electric Reliability Council of Texas (US)
	FCR	frequency containment response
	FFR	fast frequency response
	FLC	frequency limit control
	IBFFR	inertia-based FFR
	IBR	inverter-based resources
	MPPT (htt	the maximum power point tracking
	NC RfG	Network code on Requirements for Generators
	NERC	North American Electric Reliability Council
	OPC	over speed protection control
	PCS lards.iteh.ai/catalog/stanc	power conversion system/b9-9557-9c7cbda272d7/iec-tr-63401-3-20
	PFR	primary frequency response
	PMSG	permanent magnet synchronous generator
	PMU	phasor measurement units
	PSSE	Power System Simulator for Engineering
	PV	photovoltaic
	RES	renewable energy system
	ROCOF	rate of change of frequency
	SFR	system frequency response
	SIR	synchronous inertial response
	SNSP	system non-synchronous penetration
	SONI	System Operator for Northern Ireland
	UFLS	under-frequency load shedding
	WECC	Western Electricity Coordinating Council (US)

Abbreviated term	Description
WSCC	Western Systems Coordinating Council (US)
WTG	wind turbine generators

4 Definition of fast frequency response (FFR)

4.1 General

In existing literature, there is no unified definition of fast frequency response, which seems sometimes to have different meanings depending on the context.

The typical definitions from different organizations or authors are reviewed here. Some existing usage does not give a clear definition in certain cases; thus the meaning of FFR is speculated from the context. In this case the recommended definition of FFR from inverterbased resources is given based on its impact mechanism on the system frequency.

4.2 Existing usage of term FFR

4.2.1 FFR in Australia and Texas

4.2.1.1 General

GE has prepared a report about FFR technology capabilities for the Australian Energy Market Operator (AEMO), in which a description of FFR is given [1]¹. It is summarized as follows:

- Broadly, FFR is the rapid injection of power or relief of loading that helps arrest the decline of system frequency during disturbances.
- FFR is similar to PFR but acts much faster, providing power during the arresting phase, with the specific objective of providing arresting power before the frequency nadir.
- FFR and PFR both help to arrest frequency and interact with inertia to determine the 2023 frequency nadir. FFR will also contribute to establishing the settling frequency if the FFR is sustained past the time of the nadir into the rebound period.
 - Both FFR and PFR are autonomous controls that act based on local conditions, that is, they respond to quantities like local frequency (or machine speed) that can be measured at, or very close to, the equipment providing the service.

The definition of FFR that was approved in the Electric Reliability Council of Texas (ERCOT) NPPR 863 [2] as a new reserve service is shown below.

The automatic self-deployment and provision by a resource of their obligated response within 15 cycles after frequency meets or drops below a pre-set threshold, or a deployment in response to an ERCOT Verbal Dispatch Instruction (VDI) within 10 minutes.

In general, this version of FFR is similar to PFR in function. The only difference between FFR and PFR is the response time. Figure 1 shows an example relationship between the three responses that was discussed in ERCOT.

¹ Numbers in square brackets refer to the Bibliography.

Figure 1 – Proposed response times by ERCOT as of 2014

It can be recognized that the three responses can contribute to mitigate the frequency nadir when the frequency drop event occurs although the contribution levels are different. On the other hand, the secondary frequency response is highly unlikely to contribute to mitigate the frequency nadir because the delivered secondary frequency control signal is regularly updated or renewed every few seconds, e.g. 5 s.

As seen from Figure 1, it is obvious that the initiating time of FFR is not zero. The response time of the fast frequency response consists of five elements and is summarized as Table 1.

- 1) Measure Measure and identify frequency deviation and fast frequency decrease.
- 2) Identify Identify the occurrence of severe event that involves FFR.
- 3) Signal Communicate action to be taken.
- 4) Activate Actuate the resource.
- 5) Activate fully Full response from the resource.