

Edition 1.0 2020-07

TECHNICAL REPORT

Transmitting equipment for radiocommunication - Radio-over-fibre technologies for electromagnetic-field measurement - Part 2: Radio-over-fibre technologies for electric-field sensing

<u>IEC TR 63099-2:2020</u> https://standards.iteh.ai/catalog/standards/sist/1134bfb5-fd3a-4844-86a9-0f29024ea7e9/iec-tr-63099-2-2020

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2020 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland Tel.: +41 22 919 02 11 info@iec.ch www.jec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore iecch/csc and collected If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch. IEC TR 63099-2:2020

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 000 terminological entries in English and French, with equivalent terms in 16 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary

67 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

https://standards.iteh.ai/catalog/standards/sist/1134bfb5-fd3a-4844-86a9-

0f29024ea7e9/iec-tr-63099-2-2020

Edition 1.0 2020-07

TECHNICAL REPORT

Transmitting equipment for radiocommunication - Radio-over-fibre technologies for electromagnetic-field measurement - Part 2: Radio-over-fibre technologies for electric-field sensing

IEC TR 63099-2:2020 https://standards.iteh.ai/catalog/standards/sist/1134bfb5-fd3a-4844-86a9-0f29024ea7e9/iec-tr-63099-2-2020

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 33.060.20; 33.180.99

ISBN 978-2-8322-8493-3

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FOREWORD	3
INTRODUCTION	5
1 Scope	6
2 Normative references	6
3 Terms, definitions and abbreviated terms	6
3.1 Terms and definitions	6
3.2 Abbreviated terms	7
4 Practical examples of electric-field sensing system using RoF technologies	7
4.1 Overview	7
4.2 Features of electric-field sensing system using RoF technologies	7
4.3 List of implementation examples	
4.4 3-axis electric-field sensor using LN optical modulators	
4.4.1 System configuration	
4.4.2 Specifications	
4.4.3 Example of measurement results	
4.5 Bulk-type electric-field sensor using ZnTe optical modulators	
4.6 Electric-field probes using VCSEL	
Bibliography	10
Figure 1 – System diagram of the optical entertied sensorh.ai)	8
Figure 2 – Structure of the sensor head unit	9
Figure 2 – Structure of the sensor head unit <u>IEC TR 63099-22020</u> Figure 3 – 3-axis electric-field sensing system using LN optical modulator	10
Figure 4 – Evaluation results of sensitivity/and/measurement/dynamic range	
Figure 5 – Evaluation of sensor isotropy in the TEM-Cell up to 1 GHz	11
Figure 6 – Measurement setup for isotropy of the conventional diode-type electric-field sensor and electric-field sensor using LN modulator	10
U U	12
Figure 7 – Measurement results of sensitivity pattern of the conventional diode-type electric-field sensor and electric-field sensor using LN modulator according to	
IEEE Std. 1309	13
Figure 8 – Frequency characteristics of isotropy of the conventional diode-type electric-field sensor and electric-field sensor using LN optical modulator	13
Figure 9 – Schematic representation of the bulk-type electric-field sensor using ZnTe optical modulators	14
Figure 10 – Schematic representation of the electric-field sensor using VCSEL consisting of a miniature sensor head that is exclusively linked via fibre optics to a remote unit	15
Table 1 – Specification of 3-axis electric-field sensing system using LN optical modulator	9
Table 2 – Specification of 3-axis electric-field sensing system using LN optical	
modulator	12

INTERNATIONAL ELECTROTECHNICAL COMMISSION

TRANSMITTING EQUIPMENT FOR RADIOCOMMUNICATION – RADIO-OVER-FIBRE TECHNOLOGIES FOR ELECTROMAGNETIC-FIELD MEASUREMENT –

Part 2: Radio-over-fibre technologies for electric-field sensing

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. (Standards.iten.al)
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. However, a technical committee may propose the publication of a Technical Report when it has collected data of a different kind from that which is normally published as an International Standard, for example "state of the art".

IEC TR 63099-2, which is a Technical Report, has been prepared by IEC technical committee 103: Transmitting equipment for radiocommunication.

The text of this Technical Report is based on the following documents:

Draft TR	Report on voting		
103/184/DTR	103/186A/RVDTR		

Full information on the voting for the approval of this Technical Report can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 63099 series, published under the general title *Transmitting* equipment for radiocommunication – Radio-over-fibre technologies for electromagnetic-field measurement, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>IEC TR 63099-2:2020</u> https://standards.iteh.ai/catalog/standards/sist/1134bfb5-fd3a-4844-86a9-0f29024ea7e9/iec-tr-63099-2-2020

INTRODUCTION

This document provides information on the current and latest applications for electric-field sensing using radio-over-fibre technology. Electric-field measurement systems are covered, which are practically in use or will be used soon. It will be beneficial to system developers and system users in the fields of electric-field measurement. As a Technical Report, this document contains no requirements and is informative only.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>IEC TR 63099-2:2020</u> https://standards.iteh.ai/catalog/standards/sist/1134bfb5-fd3a-4844-86a9-0f29024ea7e9/iec-tr-63099-2-2020

TRANSMITTING EQUIPMENT FOR RADIOCOMMUNICATION – RADIO-OVER-FIBRE TECHNOLOGIES FOR ELECTROMAGNETIC-FIELD **MEASUREMENT** -

Part 2: Radio-over-fibre technologies for electric-field sensing

Scope 1

The purpose of this part of IEC 63099 is to provide information about the current and latest applications for electric-field measurement that use radio-over-fibre technologies. System configurations, specifications, and measurement examples of each electric-field measurement system are included. The theoretical background of electric-field measurement and calibration method of electric-field sensors are beyond the scope of this document.

Normative references 2

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. Teh STANDARD PREVIEW

IEEE Std. 145-2013, IEEE Standard for Definitions of Terms for Antennas

3

Terms, definitions and abbreviated terms https://standards.iteh.avcatalog/standards/sist/1134bfb5-fd3a-4844-86a9-

0f29024ea7e9/iec-tr-63099-2-2020

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in IEEE Std. 145-2013 and the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

3.1.1 **O/E** converter optical to electrical converter converter which directly converts optical signals into electrical signal

Note 1 to entry: A photo-diode is generally used as an O/E converter device

3.1.2 isotropy

uniform sensitivity for all spherical direction

Note 1 to entry: Sometimes it is misunderstood as equivalence of each axis sensor of 3-axis.

3.1.3

TEM-Cell

transverse electromagnetic field cell waveguide which can generate a certain level of uniform electric-fields in the cell

3.2 Abbreviated terms

DUT	device under test
EO	electro-optic
LD	laser diode
LN	lithium niobate
LNA	low noise amplifier
O/E	optical to electrical
OMI	optical modulation index
PD	photodiode
PMF	polarization maintaining fibre
P1dB	1 dB power compression point
SMF	single-mode fibre
ТЕМ	transverse electromagnetic-field
TIA	transimpedance amplifier
VCSEL	vertical cavity surface emitting laser

4 Practical examples of electric-field sensing system using RoF technologies

4.1 Overview iTeh STANDARD PREVIEW

A lot of electric-field sensing systems using RoF technology are proposed. This document introduces the system configuration, specifications, examples of measurement results of typical electric-field sensing systems which are already commercialized.

<u>IEC TR 63099-2:2020</u>

4.2 Features of electric-field sensing system using RoF technologies

Electric-field sensing systems using RoF technologies have many features as follows:

- minimal-invasiveness to electric-field;
- electrical smallness;
- good isotropy;
- high linearity.

4.3 List of implementation examples

The following list shows the examples of implementation of electric-field measurement systems using RoF technology:

- a) 3-axis electric-field sensor using LN optical modulators, described in 4.4;
- b) bulk-type electric-field sensor using ZnTe optical modulators, described in 4.5;
- c) electric-field probes using VCSEL, described in 4.6.

4.4 3-axis electric-field sensor using LN optical modulators

4.4.1 System configuration

Figure 1 shows the system configuration of the 3-axis electric-field sensor using an LN optical modulator. The sensor consists of a sensor head, controller, single-mode optical fibres for signal transfer, and a spectrum analyser for signal analysis. Figure 2 shows the structure of the sensor head. It uses an LN optical modulator, in which antenna elements are formed on the crystal substrate. These three LN optical modulators are arranged onto the three sides of a

triangle prism, obtaining isotropy [1]¹. In other words, the three LN optical modulators are arranged so that they are at right angles to each other, and their maximum radiation angle from the optical waveguide is $54,7^{\circ}$, thus achieving isotropy. The controller consists of an optical source, optical circulator, optical switch, O/E converter, and control circuit. Un-modulated light emitted from the optical source passes through the optical circulator and optical switch, and is guided to the sensor head. The LN optical modulator on each axis is selected by the optical switch, and the light, which has been intensity-modulated via a spatial electric-field, returns to the optical circulator, and is guided to the O/E converter. It is possible to measure the output on each axis after O/E conversion with a spectrum analyser and measure the electric-field strength *E* by applying the following formula.

$$E = \sqrt{E_{x}^{2} + E_{y}^{2} + E_{z}^{2}}$$
(1)

where E_x is the electric-field strength on the X axis; E_y is the electric-field strength on the Y axis; and E_z is the electric-field strength on the Z axis.

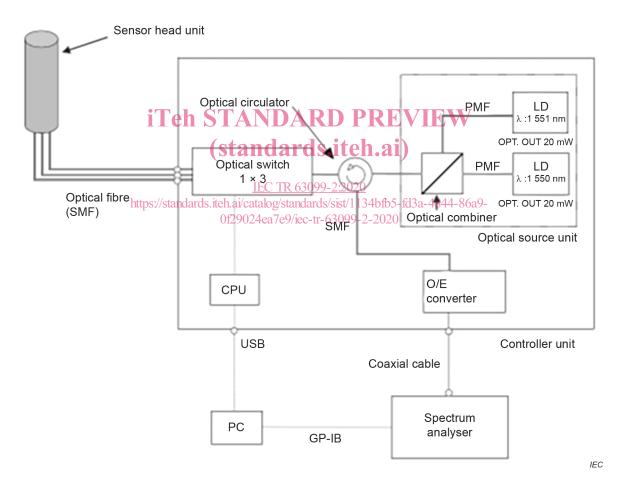


Figure 1 – System diagram of the optical E-field sensor

¹ Numbers in square brackets refer to the bibliography.

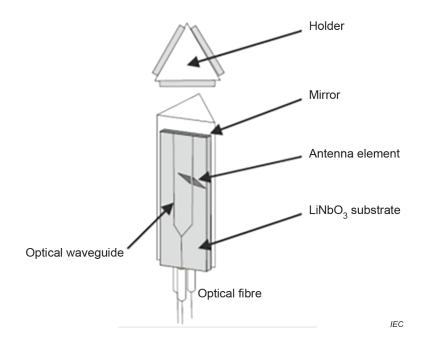


Figure 2 – Structure of the sensor head unit

4.4.2 Specifications Feh STANDARD PREVIEW

Table 1 shows the specifications of a 3-axis electric-field sensing system using the LN optical modulator models SH-03EX and SH-10EX of Seiko Giken Co. Ltd². Figure 3 shows the appearance of the 3-axis electric-field sensing system.

IEC TR 63099-2:2020

Table 1 – Specification of 3-axis electric-field sensing system using LN optical 0129024ca modulator

Item			Specification				Remarks
			Minimum	Туре	Maximum	Unit	
Frequency	SF	SH-03EX 0,1	0,1		3 000	MHz	
range	SF	I-10EX	0,1		10 000		
Measurement E-field strength	ement SH-03EX	< 300 MHz	0,06		100	V/m	S/N when minimum input: ≥ 6 dB at 301 MHz (RBW: 10 Hz,VBW: 1 Hz)
		≥ 300 MHz	0,002		100		
	SH-10EX	< 300 MHz	0,3		500	v/m	
		≥ 300 MHz	0,01		500		
Isotropic	SH-03EX SH-10EX				±1	dB	Impressed E-field strength: 6 V/m at 301 MHz

² SH-03EX and SH-10EX of Seiko Giken Co. Ltd are examples of suitable products available commercially. This information is given for the convenience of users of this document and does not constitute an endorsement by IEC of these products.