

Edition 3.0 2022-10

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Determination of RF field strength, power density and SAR in the vicinity of base stations for the purpose of evaluating human exposure

Détermination de l'intensité du champ de radiofréquences, de la densité de puissance et du DAS à proximité des stations de base dans le but d'évaluer l'exposition humaine atalog/standards/sist/95db2530-4166-408b-86b-639bf649e0cc/iec-

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2022 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IEC Secretariat 3, rue de Varembé CH-1211 Geneva 20 Switzerland

Tel.: +41 22 919 02 11 info@iec.ch www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

IEC Products & Services Portal - products.iec.ch

Discover our powerful search engine and read freely all the publications previews. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 300 terminological entries in English and French, with equivalent terms in 19 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

A propos de l'IEC

La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC

Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié.

Recherche de publications IEC -

webstore.iec.ch/advsearchform

La recherche avancée permet de trouver des publications IEC en utilisant différents critères (numéro de référence, texte, comité d'études, ...). Elle donne aussi des informations sur les projets et les publications remplacées ou retirées.

IEC Just Published - webstore.iec.ch/justpublished

Restez informé sur les nouvelles publications IEC. Just Published détaille les nouvelles publications parues. Disponible en ligne et une fois par mois par email.

Service Clients - webstore.iec.ch/csc

Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions contactez-nous: sales@iec.ch.

IEC Products & Services Portal - products.iec.ch

Découvrez notre puissant moteur de recherche et consultez gratuitement tous les aperçus des publications. Avec un abonnement, vous aurez toujours accès à un contenu à jour adapté à vos besoins.

Electropedia - www.electropedia.org

Le premier dictionnaire d'électrotechnologie en ligne au monde, avec plus de 22 300 articles terminologiques en anglais et en français, ainsi que les termes équivalents dans 19 langues additionnelles. Egalement appelé Vocabulaire Electrotechnique International (IEV) en ligne.

Edition 3.0 2022-10

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Determination of RF field strength, power density and SAR in the vicinity of base stations for the purpose of evaluating human exposure

Détermination de l'intensité du champ de radiofréquences, de la densité de puissance et du DAS à proximité des stations de base dans le but d'évaluer l'exposition humaine atalog/standards/sist/95db2530-416f-408b-8f6b-639bl649e0cc/iec-

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 13.280; 17.240

ISBN 978-2-8322-6444-7

Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

 Registered trademark of the International Electrotechnical Commission Marque déposée de la Commission Electrotechnique Internationale

CONTENTS

FC	REWO	RD	. 16
IN	TRODU	CTION	. 18
1	Scop	e	.19
2	Norm	ative references	.20
3	Term	s and definitions	.21
4	Svmb	ols and abbreviated terms	.36
	4 1	Physical quantities	36
	4.2	Constants	.36
	4.3	Abbreviated terms	.36
5	How	to use this document.	.39
-	5 1	Quick start guide	39
	5.2	RF evaluation purpose categories	42
	5.3	Implementation case studies	42
6	Evalu	ation processes for product compliance, product installation compliance and	
-	in-sit	I RF exposure assessments	.42
	6.1	Evaluation process for product compliance	.42
	6.1.1	General	.42
	6.1.2	Establishing compliance boundaries	.42
	6.1.3	Iso-surface compliance boundary definition	.43
	6.1.4	Simple compliance boundaries	.43
	6.1.5	Methods for establishing the compliance boundary	.45
	6.1.6	Uncertainty	.49
	6.1.7	Reporting for product compliance	.49
	6.2	Evaluation process used for product installation compliance	.50
	6.2.1	General	.50
	6.2.2	General evaluation procedure for product installations	.50
	6.2.3	Product installation compliance based on the actual maximum transmitted power or EIRP	. 52
	6.2.4	Product installation data collection	.55
	6.2.5	Simplified product installation evaluation process	. 56
	6.2.6	Assessment area selection	.59
	6.2.7	Measurements	.60
	6.2.8	Computations	.62
	6.2.9	Uncertainty	.62
	6.2.1	Reporting for product installation compliance	.63
	6.3	In-situ RF exposure evaluation or assessment process	.64
	6.3.1	General	.64
	6.3.2	In-situ measurement process	.64
	6.3.3	Site analysis	.65
	6.3.4	Case A evaluation	.66
	6.3.5	Case B evaluation	.66
	6.3.6	Uncertainty	.67
	6.3.7	Reporting	.67
	6.4	Averaging procedures	67
	6.4.1	Spatial averaging	.67
_	6.4.2	Time averaging	.68
7	Deter	mining the evaluation method	.68

7.1	Overview	68
7.2	Process to determine the evaluation method	68
7.2.1	General	68
7.2.2	2 Establishing the evaluation points in relation to the source-environment plane	69
7.2.3	B Exposure metric selection	70
8 Eval	uation methods	71
8.1	General	71
8.2	Measurement methods	72
8.2.1	General	72
8.2.2	2 RF field strength and power density measurements	72
8.2.3	3 SAR measurements	73
8.3	Computation methods	74
8.4	Methods for assessment based on actual maximum approach	76
8.4.1	General requirements	76
8.4.2	2 Actual transmitted power or EIRP monitoring	76
8.4.3	Actual transmitted power or EIRP control	77
8.5	Methods for the assessment of RF exposure to multiple sources	78
8.6	Methods for establishing the BS transmitted power or EIRP	79
9 Unce	ertainty	80
10 Rep	orting	81
10.1	General requirements	81
10.2	Report formatStanuarus.tten.ar)	81
10.3	Oninions and interpretations	82
Annex A	(informative) Source-environment plane and guidance on the evaluation	
Annex A method s	(informative) Source-environment plane and guidance on the evaluation election	
Annex A method s A.1	(informative) Source-environment plane and guidance on the evaluation election Guidance on the source-environment plane	83
Annex A method s A.1 A.1.	(informative) Source-environment plane and guidance on the evaluation election Guidance on the source-environment plane General	
Annex A method s A.1 A.1. A.1.	(informative) Source-environment plane and guidance on the evaluation election Guidance on the source-environment plane General Source-environment plane example	83 83 83 83
Annex A method s A.1 A.1. A.1. A.1.	 (informative) Source-environment plane and guidance on the evaluation election Guidance on the source-environment plane General Source-environment plane example Source regions 	
Annex A method s A.1 A.1.2 A.1.2 A.1.2 A.2	 (informative) Source-environment plane and guidance on the evaluation election. Guidance on the source-environment plane	83 83 83 83 83 84 90
Annex A method s A.1 A.1.2 A.1.2 A.1.2 A.2 A.3	 (informative) Source-environment plane and guidance on the evaluation election	
Annex A method s A.1 A.1.2 A.1.2 A.1.2 A.2 A.3 A.3	 (informative) Source-environment plane and guidance on the evaluation election. Guidance on the source-environment plane	83 83 83 83 83 84 90 91 91
Annex A method s A.1 A.1.2 A.1.2 A.1.2 A.2 A.3 A.3 A.3.2	 (informative) Source-environment plane and guidance on the evaluation election	83 83 83 83 90 91 91 91
Annex A method s A.1 A.1. A.1. A.1. A.2 A.3 A.3 A.3. A.3. A.3.	 (informative) Source-environment plane and guidance on the evaluation election. Guidance on the source-environment plane General Source-environment plane example Source regions Select between computation or measurement approaches Select measurement method Selection stages Selecting between RF field strength, power density and SAR measurement approaches Selecting between broadband and frequency selective measurement 	83 83 83 83 83 84 90 91 91 91 92
Annex A method s A.1 A.1. A.1. A.1. A.1. A.1. A.2 A.3 A.3 A.3. A.3. A.3. A.3.	 (informative) Source-environment plane and guidance on the evaluation election	83 83 83 83 90 91 91 91 91 91 92 93
Annex A method s A.1 A.1.2 A.1.2 A.1.3 A.2 A.3 A.3.2 A.3.3 A.3.2 A.3.3 A.3.2 A.3.3 A	 (informative) Source-environment plane and guidance on the evaluation election. Guidance on the source-environment plane	
Annex A method s A.1 A.1. A.1. A.1. A.1. A.1. A.1. A.1.	 (informative) Source-environment plane and guidance on the evaluation election. Guidance on the source-environment plane General Source-environment plane example Source regions Select between computation or measurement approaches Select measurement method Selection stages Selecting between RF field strength, power density and SAR measurement approaches. Selecting between broadband and frequency selective measurement Selecting RF field strength measurement procedures Select computation method Additional considerations 	
Annex A method s A.1 A.1. A.1. A.1. A.1. A.1. A.2 A.3 A.3 A.3 A.3. A.3. A.3. A.3. A.	 (informative) Source-environment plane and guidance on the evaluation election. Guidance on the source-environment plane	
Annex A method s A.1 A.1. A.1. A.1. A.1. A.1. A.1. A.1.	 (informative) Source-environment plane and guidance on the evaluation election. Guidance on the source-environment plane	
Annex A method s A.1 A.1.2 A.3 A.3.2 A.3.3 A.3.2 A.3.3	 (informative) Source-environment plane and guidance on the evaluation election. Guidance on the source-environment plane	
Annex A method s A.1 A.1. A.1. A.1. A.2 A.3 A.3 A.3 A.3 A.3 A.3 A.3 A.3 A.3 A.3	 (informative) Source-environment plane and guidance on the evaluation election	
Annex A method s A.1 A.1.2 A.2 A.3 A.3.2 A.3.3 A	 (informative) Source-environment plane and guidance on the evaluation election. Guidance on the source-environment plane	
Annex A method s A.1 A.1. A.1. A.1. A.2 A.3 A.3 A.3 A.3 A.3 A.3 A.3 A.3 A.3 A.3	 (informative) Source-environment plane and guidance on the evaluation election	
Annex A method s A.1 A.1.2 A.3 A.3.2 A.3.3 A.3.2 A.3.3	 (informative) Source-environment plane and guidance on the evaluation election. Guidance on the source-environment plane General. Source-environment plane example. Source regions Select between computation or measurement approaches. Select measurement method. Selecting between RF field strength, power density and SAR measurement approaches. Selecting between broadband and frequency selective measurement Select computation method. Selecting RF field strength measurement procedures. Selecting RF field strength measurement procedures. Select computation method. Selecting RF field strength measurement procedures. Select computation method. Additional considerations. Simplicity. Evaluation method sfor RF exposure evaluation	
Annex A method s A.1 A.1. A.1. A.1. A.1. A.1. A.2 A.3 A.3 A.3 A.3 A.3 A.3 A.3 A.3 A.3 A.3	 (informative) Source-environment plane and guidance on the evaluation election. Guidance on the source-environment plane General Source-environment plane example Source regions Select between computation or measurement approaches Select measurement method. Selection stages Selecting between RF field strength, power density and SAR measurement approaches. Selecting between broadband and frequency selective measurement Selecting RF field strength measurement procedures Select computation method. Select computation method. Selecting RF field strength measurement procedures Select computation method. Simplicity. Evaluation method ranking Applying multiple methods for RF exposure evaluation (normative) Evaluation methods. Overview. General. Coordinate systems and reference points 	
Annex A method s A.1 A.1. A.1. A.1. A.2 A.3 A.3 A.3 A.3 A.3 A.3 A.3 A.3 A.3 A.3	 (informative) Source-environment plane and guidance on the evaluation election. Guidance on the source-environment plane General Source-environment plane example. Source regions Select between computation or measurement approaches Select measurement method. Selection stages Selecting between RF field strength, power density and SAR measurement approaches. Selecting between broadband and frequency selective measurement Selecting RF field strength measurement procedures Select computation method. Additional considerations Simplicity Evaluation methods for RF exposure evaluation (normative) Evaluation methods. Overview. General. Coordinate systems and reference points RF exposure evaluation principles 	

B.3.2	Measurement of RF field strength and power density	102
B.3.3	Spatial averaging	104
B.3.4	Time averaging	107
B.3.5	Comparing measured and computed values	109
B.3.6	Personal RF monitors	109
B.4 RF	field strength and power density measurements	109
B.4.1	Applicability of RF field strength and power density measurements	109
B.4.2	In-situ RF exposure measurements	109
B.4.3	Laboratory based RF field strength and power density measurements	121
B 4 4	RE field strength and power density measurement uncertainty	131
B.5 SAI	R measurements	136
B 5 1	Overview of SAR measurements	136
B 5 2	SAR measurement requirements	136
B 5 3	SAR measurement description	138
B 5 /	SAR measurement uncertainty	1/3
D.J.4 B.6 Box	SAR measurement uncertainty	145
		140
D.U.I D.6.0	Besic computation formulae for PE field strength or power density	140
D.0.2	evaluation	146
B 6 3	Basic whole-body SAR and neak spatial-average SAR evaluation	
D.0.0	formulas	153
B.6.4	Basic compliance boundary assessment method for BS using parabolic	
	dish antennas	160
B.6.5	Basic compliance boundary assessment method for intentionally	
	radiating cables	163
B.7 Adv	vanced computation methods <u>62232.2022</u>	164
hB.7.1 tan	General Maatalog/standards/sist/95db2530-416f-408b-8f6b-639bf649e0cc	ie.c-164
B.7.2	Synthetic model and ray tracing algorithms	164
B.7.3	Full wave RF exposure computation	171
B.7.4	Full wave SAR computation	180
B.8 Ext	rapolation from the evaluated values to the maximum or actual values	185
B.8.1	Extrapolation method	185
B.8.2	Extrapolation to maximum in-situ RF field strength or power density	
	using broadband measurements	187
B.8.3	Extrapolation to maximum in-situ RF field strength / power density using	407
	Influency or code selective measurements	187
B.8.4	Influence of traffic in real operating network	188
B.8.5	Extrapolation for massive MIMO and beamforming BS	189
B.8.6	Maximum exposure extrapolation with dynamic spectrum sharing (DSS).	191
B.9 Gui	Idance for Implementing the actual maximum approach	192
B.9.1	BS actual EIRP evaluation assumptions	192
B.9.2	Technology duty-cycle factor description	193
B.9.3	CDF evaluation using modelling studies	195
B.9.4	CDF evaluation using measurement studies on operational BS sites	196
B.9.5	Actual transmitted power or EIRP monitoring counters	198
B.9.6	Configurations with multiple transmitters	198
B.10 Tra	nsmitted power or EIRP evaluation	200
B.10.1	General	200
B.10.2	Measurement of the transmitted power in conducted mode	200
B.10.3	Measurement of the transmitted power in OTA conditions	201

B.10.4	Measurement of the EIRP in OTA and laboratory conditions	201
B.10.5	Measurement of the EIRP in OTA and in-situ conditions	202
Annex C (inf and monitori	ormative) Guidelines for the validation of power or EIRP control features ng counter(s) related to the actual maximum approach	203
C.1 0	verview	203
C.2 G	uidelines for validating control feature(s) and monitoring counters	
C.3 Va	alidation of power or EIRP monitoring counter in laboratory conditions	204
C.3.1	Validation of power or EIRP monitoring counter in conducted mode –	
	test procedure	204
C.3.2	Validation of power or EIRP monitoring counter in OTA mode – test procedure	206
C.3.3	Validation of control feature(s) in laboratory conditions	209
C.3.4	Validation of control features using in-situ measurements	212
C.4 Va	alidation test report	214
C.5 Ca	ase studies	215
C.5.1	Case study A – In-situ validation	215
C.5.2	Case study B – In-situ validation	219
C.5.3	Case study C – In-situ validation	222
Annex D (inf	formative) Rationale supporting simplified product installation criteria	227
D.1 G	eneral	227
D.2 CI	ass E2.0.h.STANDARD.PRFV/IFW/	227
D.3 CI	ass E10	228
D.4 CI	ass E100	229
D.5 CI	ass E+	231
D.6 Si	mplified formulas for millimetre-wave antennas using massive MIMO or	
be	am steering	232
Annex E (inf	ormative) Technology-specific exposure evaluation guidance	234
E.1 O	verview to guidance on specific technologies	234
E.2 St	ummary of technology-specific information	234
E.3 G	uidance on spectrum analyser settings	235
E.3.1	Overview of spectrum analyser settings	235
E.3.2	Detection algorithms	236
E.3.3	Resolution bandwidth and channel power processing	236
E.3.4	Integration per service	239
E.4 St	able transmitted power signals	239
E.4.1	TDMA/FDMA technology	239
E.4.2	WCDMA/UMTS technology	240
E.4.3	OFDM technology	241
E.5 W	CDMA measurement and calibration using a code domain analyser	241
E.5.1	WCDMA measurements – General	241
E.5.2	WCDMA decoder characteristics	241
E.5.3	Calibration	242
E.6 W	i-Fi measurements	244
E.6.1	General	244
E.6.2	Integration time for reproducible measurements	245
E.6.3	Channel occupation	245
E.6.4	Some considerations	246
E.6.5	Measurement configuration and steps	246
E.6.6	Influence of the application layers	247

E.6.7	7 Power control	247
E.7	LTE measurements	248
E.7.1	1 Overview	248
E.7.2	2 LTE transmission modes	248
E.7.3	3 LTE-FDD frame structure	249
E.7.4	4 LTE-TDD frame structure	250
E.7.5	5 Maximum LTE exposure evaluation	252
E.7.6	6 Instantaneous LTE exposure evaluation	257
E.7.7	7 MIMO multiplexing of LTE BS	258
E.8	NR BS measurements	258
E.8.1	1 General	258
E.8.2	2 Maximum NR exposure evaluation	258
E.9	Establishing compliance boundaries using numerical simulations of MIMO array antennas emitting correlated waveforms	268
E.9.1	1 General	268
E.9.2	2 Field combining near base stations for correlated exposure with the purpose of establishing compliance boundaries	268
E.9.3	Numerical simulations of MIMO array antennas with densely packed	269
FQ/	Numerical simulations of large MIMO array antennas	270
E 10	Massive MIMO antennas	270
E.10		270
L.10		270
E 10	2 Deterministic conservative approach	
E.10	0.2 Deterministic conservative approach	270
E.10 E.10 E.10	 Deterministic conservative approach Statistical conservative approach Example approaches 	270
E.10 E.10 E.10 Annex F (Deterministic conservative approach Statistical conservative approach Example approaches	270 271
E.10 E.10 E.10 Annex F (2020 brie	 Deterministic conservative approach Statistical conservative approach Example approaches	270 271
E.10 E.10 E.10 Annex F (2020 brie F.1	 Deterministic conservative approach Statistical conservative approach Example approaches (informative) Guidelines for the assessment of BS compliance with ICNIRP- of exposure limits General 	270 271 288 288
E.10 E.10 E.10 Annex F (2020 brie F.1 F.2	 Deterministic conservative approach	270 271 288 288 288
E.10 E.10 E.10 Annex F (2020 brie F.1 F.2 F.3	 Deterministic conservative approach Statistical conservative approach Example approaches (informative) Guidelines for the assessment of BS compliance with ICNIRP- f exposure limits General Brief exposure limits Implications of brief exposure limits on signal modulation and TDD duty cycle 	270 271 288 288 288 288
E.10 E.10 E.10 Annex F (2020 brie F.1 F.2 F.3 F.4	 Deterministic conservative approach	270 271 288 288 288 288 290 290
E.10 E.10 E.10 Annex F (2020 brie F.1 F.2 F.3 F.4 Annex G	 Deterministic conservative approach Statistical conservative approach Example approaches (informative) Guidelines for the assessment of BS compliance with ICNIRP- of exposure limits General Brief exposure limits Implications of brief exposure limits on signal modulation and TDD duty cycle Implications of brief exposure limits on the actual maximum approach (informative) Uncertainty 	270 271 288 288 288 290 290 294
E.10 E.10 E.10 Annex F (2020 brie F.1 F.2 F.3 F.4 Annex G G.1	 Deterministic conservative approach Statistical conservative approach Example approaches (informative) Guidelines for the assessment of BS compliance with ICNIRP- f exposure limits General Brief exposure limits Implications of brief exposure limits on signal modulation and TDD duty cycle Implications of brief exposure limits on the actual maximum approach (informative) Uncertainty Background 	270 271 288 288 288 290 290 294 294
E.10 E.10 E.10 Annex F (2020 brie F.1 F.2 F.3 F.4 Annex G G.1 G.2	 Deterministic conservative approach Statistical conservative approach Example approaches (informative) Guidelines for the assessment of BS compliance with ICNIRP- of exposure limits General Brief exposure limits Implications of brief exposure limits on signal modulation and TDD duty cycle Implications of brief exposure limits on the actual maximum approach (informative) Uncertainty Background Requirement to estimate uncertainty 	270 271 288 288 288 290 290 294 294 294
E.10 E.10 E.10 Annex F (2020 brie F.1 F.2 F.3 F.4 Annex G G.1 G.2 G.3	 Deterministic conservative approach Statistical conservative approach Example approaches (informative) Guidelines for the assessment of BS compliance with ICNIRP- of exposure limits General Brief exposure limits Implications of brief exposure limits on signal modulation and TDD duty cycle Implications of brief exposure limits on the actual maximum approach (informative) Uncertainty Background Requirement to estimate uncertainty How to estimate uncertainty 	270 271 288 288 288 290 290 290 294 294 294 294 295
E.10 E.10 E.10 Annex F (2020 brie F.1 F.2 F.3 F.4 Annex G G.1 G.2 G.3 G.4	 Deterministic conservative approach Statistical conservative approach Example approaches (informative) Guidelines for the assessment of BS compliance with ICNIRP- of exposure limits General Brief exposure limits Implications of brief exposure limits on signal modulation and TDD duty cycle Implications of brief exposure limits on the actual maximum approach (informative) Uncertainty Background Requirement to estimate uncertainty How to estimate uncertainty Guidance on uncertainty and assessment schemes 	270 271 288 288 288 290 290 294 294 294 294 295 295
E.10 E.10 E.10 Annex F (2020 brie F.1 F.2 F.3 F.4 Annex G G.1 G.2 G.3 G.4 G.4	 Deterministic conservative approach Statistical conservative approach Example approaches (informative) Guidelines for the assessment of BS compliance with ICNIRP- of exposure limits General Brief exposure limits Implications of brief exposure limits on signal modulation and TDD duty cycle Implications of brief exposure limits on the actual maximum approach (informative) Uncertainty Background Requirement to estimate uncertainty How to estimate uncertainty Guidance on uncertainty and assessment schemes General 	270 271 288 288 288 290 290 290 294 294 294 295 295
E.10 E.10 E.10 Annex F (2020 brie F.1 F.2 F.3 F.4 Annex G G.1 G.2 G.3 G.4 G.4 G.4.2	 Deterministic conservative approach Statistical conservative approach. Example approaches (informative) Guidelines for the assessment of BS compliance with ICNIRP- of exposure limits General. Brief exposure limits Implications of brief exposure limits on signal modulation and TDD duty cycle. Implications of brief exposure limits on the actual maximum approach (informative) Uncertainty Background. Requirement to estimate uncertainty. How to estimate uncertainty Guidance on uncertainty and assessment schemes Overview of assessment schemes 	270 271 288 288 288 290 290 294 294 294 294 295 295 295 295
E.10. E.10. E.10. Annex F (2020 brie F.1 F.2 F.3 F.4 Annex G G.1 G.2 G.3 G.4 G.4.2 G.4.2 G.4.3	 Deterministic conservative approach Statistical conservative approach Example approaches (informative) Guidelines for the assessment of BS compliance with ICNIRP- of exposure limits General Brief exposure limits Implications of brief exposure limits on signal modulation and TDD duty cycle Implications of brief exposure limits on the actual maximum approach (informative) Uncertainty Background Requirement to estimate uncertainty How to estimate uncertainty Guidance on uncertainty and assessment schemes General Overview of assessment schemes Examples of assessment schemes 	270 271 288 288 288 288 290 290 290 294 294 294 295 295 295 295 296
E.10 E.10 E.10 Annex F (2020 brie F.1 F.2 F.3 F.4 Annex G G.1 G.2 G.3 G.4 G.4 G.4.2 G.4.3 G.4.2 G.4.3	1.2 Deterministic conservative approach 1.3 Statistical conservative approach 1.4 Example approaches (informative) Guidelines for the assessment of BS compliance with ICNIRP- of exposure limits General Brief exposure limits General Implications of brief exposure limits on signal modulation and TDD duty cycle Implications of brief exposure limits on the actual maximum approach (informative) Uncertainty Background Requirement to estimate uncertainty How to estimate uncertainty Guidance on uncertainty and assessment schemes 1 General 2 Overview of assessment schemes 3 Examples of assessment schemes 4 Assessment schemes and compliance probabilities	270 271 271 288 288 288 290 290 290 290 294 294 295 295 295 295 295 295 295 295 295 295 295
E.10 E.10 E.10 Annex F (2020 brie F.1 F.2 F.3 F.4 Annex G G.1 G.2 G.3 G.4 G.4 G.4.2 G.4.2 G.4.2 G.4.2 G.4.2 G.4.2	1.2 Deterministic conservative approach 1.3 Statistical conservative approach 1.4 Example approaches (informative) Guidelines for the assessment of BS compliance with ICNIRP- of exposure limits General Brief exposure limits General Implications of brief exposure limits on signal modulation and TDD duty cycle Implications of brief exposure limits on the actual maximum approach (informative) Uncertainty Background Requirement to estimate uncertainty How to estimate uncertainty Guidance on uncertainty and assessment schemes 1 General 2 Overview of assessment schemes 3 Examples of assessment schemes 3 Examples of assessment schemes 3 Examples of assessment schemes 4 Assessment schemes and compliance probabilities Guidance on uncertainty Guidance on uncertainty	270 271 288 288 288 290 290 290 294 294 294 295 291
E.10. E.10. E.10. Annex F (2020 brief F.1 F.2 F.3 F.4 Annex G G.1 G.2 G.3 G.4 G.4 G.4.2 G.4.2 G.4.2 G.4.2 G.4.2 G.5 G.5.7	 Deterministic conservative approach Statistical conservative approach Example approaches (informative) Guidelines for the assessment of BS compliance with ICNIRP- f exposure limits General Brief exposure limits Implications of brief exposure limits on signal modulation and TDD duty cycle Implications of brief exposure limits on the actual maximum approach (informative) Uncertainty Background Requirement to estimate uncertainty How to estimate uncertainty Guidance on uncertainty and assessment schemes Examples of assessment schemes Examples of assessment schemes Assessment schemes and compliance probabilities Guidance on uncertainty 	270 271 271 288 288 288 290 290 290 290 290 295 295 295 295 295 295 295 295 295 295 295 295 295 295 295 295 295 295 295 291 291
E.10 E.10 E.10 Annex F (2020 brie F.1 F.2 F.3 F.4 Annex G G.1 G.2 G.3 G.4 G.4 G.4 G.4.2 G.4.2 G.4.2 G.5 G.5.2	1.2 Deterministic conservative approach 1.3 Statistical conservative approach 1.4 Example approaches (informative) Guidelines for the assessment of BS compliance with ICNIRP- if exposure limits General Brief exposure limits Implications of brief exposure limits on signal modulation and TDD duty cycle Implications of brief exposure limits on the actual maximum approach (informative) Uncertainty Background Requirement to estimate uncertainty How to estimate uncertainty Guidance on uncertainty and assessment schemes 1 General 2 Overview of assessment schemes 3 Examples of assessment schemes 4 Assessment schemes and compliance probabilities Guidance on uncertainty 1 1 Overview 2 Measurement uncertainty and confidence levels	270 271 288 288 288 288 290 290 290 294 294 294 295
E.10. E.10. E.10. Annex F (2020 brief F.1 F.2 F.3 F.4 Annex G G.1 G.2 G.3 G.4 G.4 G.4 G.4 G.4 G.4 G.4 G.4 G.4 G.4	1.2 Deterministic conservative approach 1.3 Statistical conservative approach 1.4 Example approaches (informative) Guidelines for the assessment of BS compliance with ICNIRP- of exposure limits General Brief exposure limits General Implications of brief exposure limits on signal modulation and TDD duty cycle Implications of brief exposure limits on the actual maximum approach (informative) Uncertainty Background Requirement to estimate uncertainty How to estimate uncertainty Guidance on uncertainty and assessment schemes 3 Examples of assessment schemes 3 Examples of assessment schemes 3 Examples of assessment schemes 4 Assessment schemes and compliance probabilities Guidance on uncertainty 1 1 Overview 2 Measurement uncertainty and confidence levels Applying uncertainty for compliance assessments	270 271 271 288 288 288 290 290 290 290 294 294 294 295 290 295 295
E.10, E.10, E.10, E.10, Annex F (2020 brie F.1 F.2 F.3 F.4 Annex G G.1 G.2 G.3 G.4 G.4, G.4,2 G.4,2 G.4,2 G.4,2 G.5,2 G.5,2 G.6 G.7	1.2 Deterministic conservative approach 1.3 Statistical conservative approach 1.4 Example approaches (informative) Guidelines for the assessment of BS compliance with ICNIRP- of exposure limits Informative Brief exposure limits Implications of brief exposure limits on signal modulation and TDD duty cycle Implications of brief exposure limits on the actual maximum approach (informative) Uncertainty Background Requirement to estimate uncertainty How to estimate uncertainty Guidance on uncertainty and assessment schemes 1 General 2 Overview of assessment schemes 3 Examples of assessment schemes 4 Assessment schemes and compliance probabilities Guidance on uncertainty I 1 Overview 2 Measurement uncertainty and confidence levels Applying uncertainty for compliance assessments Example influence quantities for field measurements	270 271 271 288 288 288 290 290 290 290 294 294 295
E.10. E.10. E.10. E.10. Annex F (2020 brief F.1 F.2 F.3 F.4 Annex G G.1 G.2 G.3 G.4 G.4.2 G.4.2 G.4.2 G.4.2 G.4.2 G.5.2 G.5.2 G.6 G.7 G.7.2	1.2 Deterministic conservative approach 1.3 Statistical conservative approach 1.4 Example approaches (informative) Guidelines for the assessment of BS compliance with ICNIRP- f exposure limits General Brief exposure limits Implications of brief exposure limits on signal modulation and TDD duty cycle Implications of brief exposure limits on the actual maximum approach (informative) Uncertainty Background Requirement to estimate uncertainty. How to estimate uncertainty Guidance on uncertainty and assessment schemes 1 General 2 Overview of assessment schemes 3 Examples of assessment schemes 4 Assessment schemes and compliance probabilities Guidance on uncertainty 1 1 Overview 2 Measurement uncertainty and confidence levels Applying uncertainty for compliance assessments Example influence quantities for field measurements 1 General	270 271 271 288 288 288 290 290 290 294 294 294 295 301 301 301 304 304
E.10. E.10. E.10. E.10. Annex F (2020 brie F.1 F.2 F.3 F.4 Annex G G.1 G.2 G.3 G.4 G.4 G.4 G.4 G.4 G.4 G.4 G.4 G.4 G.4	1.2 Deterministic conservative approach 1.3 Statistical conservative approach 1.4 Example approaches (informative) Guidelines for the assessment of BS compliance with ICNIRP- if exposure limits General Brief exposure limits Implications of brief exposure limits on signal modulation and TDD duty cycle Implications of brief exposure limits on the actual maximum approach (informative) Uncertainty Background Requirement to estimate uncertainty How to estimate uncertainty Guidance on uncertainty and assessment schemes 1 General 2 Overview of assessment schemes 3 Examples of assessment schemes 4 Assessment schemes and compliance probabilities Guidance on uncertainty 1 1 Overview 2 Measurement uncertainty and confidence levels Applying uncertainty for compliance assessments Example influence quantities for field measurements 1 General 2 Calibration uncertainty of measurement antenna or field probe	270 271 288 288 288 288 290 290 290 290 290 294 294 294 295 295 295 295 295 295 295 295 295 295 295 295 295 295 295 295 295 295 301 301 301 304 304 304 304
E.10. E.10. E.10. E.10. Annex F (2020 brie F.1 F.2 F.3 F.4 Annex G G.1 G.2 G.3 G.4 G.4.2 G.4.2 G.4.2 G.4.2 G.4.2 G.4.2 G.4.2 G.5.2 G.6 G.7 G.7.2 G.7.2 G.7.2	1.2 Deterministic conservative approach 1.3 Statistical conservative approach 1.4 Example approaches (informative) Guidelines for the assessment of BS compliance with ICNIRP- if exposure limits General Brief exposure limits Implications of brief exposure limits on signal modulation and TDD duty cycle Implications of brief exposure limits on the actual maximum approach (informative) Uncertainty Background Requirement to estimate uncertainty How to estimate uncertainty Guidance on uncertainty and assessment schemes 1 General 2 Overview of assessment schemes 3 Examples of assessment schemes 4 Assessment schemes and compliance probabilities Guidance on uncertainty Implications 1 Overview 2 Measurement uncertainty and confidence levels Applying uncertainty for compliance assessments 2 Measurement uncertainty and confidence levels Applying uncertainty for compliance assessments 2 Calibration uncertainty of measurement antenna or field probe 3 Frequency response of the measurement antenna or f	270 271 288 288 288 290 290 290 294 294 294 295 301 301 304 304 304 304

G.7.5	Frequency response of the spectrum analyser	306
G.7.6	Temperature response of a broadband field probe	306
G.7.7	Linearity deviation of a broadband field probe	307
G.7.8	Mismatch uncertainty	307
G.7.9	Deviation of the experimental source from numerical source	307
G.7.10	Meter fluctuation uncertainty for time-varying signals	307
G.7.11	Uncertainty due to power variation in the RF source	308
G.7.12	Uncertainty due to field gradients	308
G.7.13	Mutual coupling between measurement antenna or isotropic probe and object	309
G.7.14	Uncertainty due to field scattering from the surveyor's body	310
G.7.15	Measurement device	312
G.7.16	Fields out of measurement range	312
G.7.17	Noise	313
G.7.18	Integration time	313
G.7.19	Power chain	313
G.7.20	Positioning system	313
G 7 21	Matching between probe and the FUT	313
G 7 22	Drifts in output power of the FUT probe temperature and humidity	313
G 7 23	Perturbation by the environment	313
G.8 Exa	mple influence quantities for RE field strength computations by ray	
trac	ing or full wave methods	314
G.8.1	General	314
G.8.2	Svstem	314
G.8.3	Technique uncertainties	
G.8.4	Environmental uncertainties.	
G.9 Influ	uence quantities for SAR measurements	^{ec} 316
G.9.1	General 62232-2022	316
G 9 2	Post-processing	316
G 9 3	FUT holder	316
G 9 4	FUT positioning	317
G 9 5	Phantom shell uncertainty	318
G 9 6	SAR correction depending on target liquid permittivity and conductivity	318
G 9 7	Liquid permittivity and conductivity measurements	310
C.9.7	Liquid temporature	210
G 10 Influ	Liquid temperature	210
G 11 Spa	tial averaging	210
G.11 Spa		210
G.11.1	Ceneral seels feding verifications	220
G.11.2	Small-scale rading variations	201
G.11.3	Error on the estimation of local average power density	200
G.11.4	Characterization of environment statistical properties	322
G.11.5	Characterization of different spatial averaging schemes	322
G.12 Influ	lence of numan body on measurements of the electric RF field strength	327
G.12.1	the method of moments (surface equivalence principle)	327
G.12.2	Comparison with measurements	329
G.12.3	Conclusions	330
Annex H (infor	mative) Guidance on comparing evaluated parameters with a limit value	331 221
11.1 0/6		

H.2	Information recommended to compare evaluated value against limit value	331
H.3	Performing a limit comparison at a given confidence level	331
H.4	Performing a limit comparison using a process-based assessment scheme	332
Bibliogra	phy	333
Figure 1	 Quick start guide to the evaluation process 	40
Figure 2	 Example of iso-surface compliance boundary 	43
Figure 3	 Example of cylindrical and half-pipe compliance boundaries 	44
Figure 4	 Example of box shaped compliance boundary 	45
Figure 5	 Example of truncated box shaped compliance boundary 	45
Figure 6	 Example illustrating the linear scaling procedure 	46
Figure 7 patterns	 Example of massive MIMO antenna and corresponding beams and envelope 	48
Figure 8 steering	 Example of compliance boundary shape for BS antennas with beam 	48
Figure 9	 Example of dish antenna compliance boundary 	49
Figure 10	0 – Flowchart describing the product installation evaluation process	51
Figure 1 ² power or	1 – Example of a CDF curve representing the normalized actual transmitted EIRP	53
Figure 12 maximun	2 – Flow chart for product installation compliance based on the actual n transmitted power or EIRP threshold(s)	55
Figure 13	3 – Simplified compliance assessment process using installation classes	56
Figure 14 (ADB) wi	4 – Example of DI within a square-shaped assessment domain boundary th dimension <i>L</i> ADB	60
Figure 1	5 – In-situ RF exposure evaluation or assessment process flow chart	^{ec-} 65
Figure 16	β – Source-environment plane concept $^{-2022}$	69
Figure 17	7 – Flow chart of the measurement methods	
Figure 18	B = Flow chart of the relevant computation methods	72
Figure 10	D Example of segments used for monitoring and control of BS using mMIMO	75
or beam	steering	77
Figure A. on a tow	.1 – Example source-environment plane regions near a base station antenna er	83
Figure A. has a na	.2 – Example source-environment plane regions near a roof-top antenna that rrow vertical (elevation plane) beamwidth (not to scale)	84
Figure A.	.3 – Geometry of an antenna with largest linear dimension $L_{\sf eff}$ and largest	
end dime	ension L _{end}	85
Figure A.	.4 – Maximum path difference for an antenna with largest linear dimension L	89
Figure B. antenna	.1 – Cartesian, cylindrical and spherical coordinate systems relative to the BS (view from the rear panel)	97
Figure B.	.2 – Typical RF exposure assessment case	99
Figure B.	.3 – Reflection due to the presence of a ground plane	100
Figure B. surround	.4 – Reflections due to the presence of internal walls of the housing and ing asphalt and soil configuring a base station installed underground	101
Figure B.	.5 – General representation of RF field strength or power density ments	102
Figure B.	.6 – Practical examples of measurement equipment installation	103

Figure B.7 – Spatial averaging schemes relative to walking or standing surface and in the vertical plane oriented to offer maximum area in the direction of the source being evaluated	105
Figure B.8 – Spatial averaging relative to spatial-peak field strength point height	107
Figure B.9 – Evaluation locations	119
Figure B.10 – Relationship of separation of remote radio source and evaluation area to separation of evaluation points	120
Figure B.11 – Outline of the surface scanning methodology	123
Figure B.12 – Block diagram of the antenna measurement system	124
Figure B.13 – Minimum radius constraint, where a denotes the minimum radius of a sphere, centred at the reference point, that encompasses the EUT	125
Figure B.14 – Maximum angular sampling spacing constraint	125
Figure B.15 – Outline of the volume/surface scanning methodology	128
Figure B.16 – Block diagram of typical near-field EUT measurement system	129
Figure B.17 – Examples of positioning of the EUT relative to the relevant phantom	136
Figure B.18 – Phantom liquid volume and measurement volume used for whole-body SAR measurements with the box-shaped phantoms	143
Figure B.19 – Reference frame employed for cylindrical formulas for RF field strength computation at a point P (left), and on a line perpendicular to boresight (right)	147
Figure B.20 – Views illustrating the three valid zones for field strength computation around an antenna	149
Figure B.21 – Enclosed cylinder around collinear array antennas, with and without electrical downtilt	150
Figure B.22 – Spherical formulas reference results	153
Figure B.23 – Cylindrical formulas reference results	153
Figure B.24 – Directions for which SAR estimation expressions are provided	154
Figure B.25 – Description of SAR estimation formulas physical parameters	155
Figure B.26 – Flow chart for the simplified assessment of RF compliance boundary in the line of sight of a parabolic dish antenna	162
Figure B.27 – Radiating cable geometry	163
Figure B.28 – Synthetic model and ray tracing algorithms geometry and parameters	167
Figure B.29 – Line 4 far-field positions for synthetic model and ray tracing validation example	169
Figure B.30 – Antenna parameters for synthetic model and ray tracing algorithms validation example	170
Figure B.31 – Generic 900 MHz BS antenna with nine dipole radiators	177
Figure B.32 – Line 1, 2 and 3 near-field positions for full wave and ray tracing validation	178
Figure B.33 – Generic 1 800 MHz BS antenna with five slot radiators	179
Figure B.34 – BS antenna placed in front of a multi-layered lossy cylinder	185
Figure B.35 – Time variation over 24 h of the exposure induced by NR, GSM and FM, each normalized to the mean value	189
Figure B.36– Generic structure of a base station transmitted RF signal frame	194
Figure B.37 – Example of setup for the direct power level measurement for BS equipped with direct access conducted output ports	201
Figure C.1 – Example of a laboratory test setup for validation of an actual power control feature intended for use with a 5G BS	210

Figure C.2 – Example of a test setup for validation of an actual power control feature implemented in a 5G BS	213
Figure C.3 – Ground based in-situ validation setup	216
Figure C.4 – In-situ validation measurement setup near the general public compliance boundary in front of the 5G massive MIMO antenna (bore sight position)	217
Figure C.5 – Comparison between measured time-averaged EMF and power control feature (5G counter data) for the ground-based measurements	218
Figure C.6 – Measured exposure adaptation in time expressed as a percentage of ICNIRP limits [1], [2] for the measurements near the general public compliance boundary	218
Figure C.7 – Overview of the measurement site	220
Figure C.8 – Ground view of the validation site and measurement setup, located 60 m from the 5G BS, in the line of sight	221
Figure C.9 – Power transmitted by the massive MIMO antenna (top trace), channel power (ChP) measurements (middle trace) and transmitted resource blocks (RBs) (bottom trace)	221
Figure C.10 – Overview of the test platform	223
Figure C.11 – Example of synthetic model simulation of the test area	223
Figure C.12 – Examples of traffic load profiles	223
Figure C.13 – Example of testing in different segments in the test area	224
Figure C.14 – Results of the monitoring validation and baseline test in phase 1	225
Figure C.15 – Example of power density measurements and power density derived from counters	225
Figure C.16 – Measured power density and power density derived from counters	226
Figure C.17 – Comparisons of both counters and measurements	226
Figure D.1 – Measured ER as a function of distance for a BS ($G = 5 \text{ dBi}$, -639b1649e0cc/i f = 2 100 MHz) transmitting with an EIRP of 2 W (installation class E2) and 10 W (installation class E10)	ec- 227
Figure D.2 – Minimum installation height as a function of transmitting power corresponding to installation class E10	228
Figure D.3 – Compliance distance in the main lobe as a function of EIRP established in accordance with the far-field formula corresponding to installation class E100	229
Figure D.4 – Minimum installation height as a function of transmitting power corresponding to installation class E100	230
Figure D.5 – Averaged power density at ground level for various installation configurations of equipment with 100 W EIRP (installation class E100)	231
Figure D.6 – Compliance distance in the main lobe CD _m as a function of EIRP	
established in accordance with the far-field formula corresponding to installation class E+	232
Figure D.7 – Minimum installation height <i>h</i> m as a function of EIRP corresponding to installation class E+	232
Figure D.8 – Power density distribution in watts per square metre in a vertical cut plane for an 8 × 8 antenna array at 28 GHz (grid step of 10 cm)	233
Figure D.9 – Power density distribution in watts per square metre in a vertical cut plane for an 8 × 8 antenna array at 39 GHz (grid step of 10 cm)	233
Figure E.1 – Spectral occupancy for GMSK	237
Figure E.2 – Spectral occupancy for CDMA	238
Figure E.3 – Channel allocation for a WCDMA signal	241
Figure E.4 – Example of Wi-Fi frames	244

Figure E.5 – Channel occupation versus the integration time for IEEE 802.11b standard	. 245
Figure E.6 – Channel occupation versus nominal throughput rate for IEEE 802.11b/g standards	. 246
Figure E.7 – Wi-Fi spectrum trace snapshot	
Figure E.8 – Frame structure of transmission signal for LTE-FDD downlink	250
Figure E.9 – Frame structure LTE-TDD type 2 (for 5 ms switch-point periodicity)	251
Figure E.10 – Frame structure of transmission signal for LTE-TDD	251
Figure E.11 – LTE-TDD PBCH measurement example	. 254
Figure E.12 – Example of VBW setting for LTE-FDD and LTE-TDD to avoid underestimation	. 255
Figure E.13 – Examples of received waves from LTE-FDD downlink signals using a spectrum analyser using zero span mode	256
Figure E.14 – LTE-TDD PBCH measurement example spectrum analyser using zero span mode	. 257
Figure E.15 – Example of VBW setting for NR to avoid underestimation	. 261
Figure E.16 – Examples of measurement accuracy results according to the ratio of VBW and RBW for NR SCS 30 kHz and 1 MHz RBW using various SA types (A to D)	261
Figure E.17 – Waterfall reconstruction plot of a 1 s long measurement trace of an NR signal with subcarrier spacing (SCS) 30 kHz (along one component of the electric field)	262
Figure E.18 – Example of NR signal frame measured on SA with SSB signal above PDSCH (data)	. 262
Figure E.19 – Example of NR signal frame measured on SA with SSB signal below or equal to PDSCH (data)	. 263
Figure E.20 – Time gating of SS burst signal ??????????	. 264
Figure E.21 – Representation of the channel bandwidth (CBW)	264
Figure E.22 – An example for one port CSI-RS beam design	. 267
Figure E.23 – Plan view representation of statistical conservative model	273
Figure E.24 – Binomial cumulative probability function for $N = 24$, PR = 0,125	. 281
Figure E.25 – Binomial cumulative probability function for $N = 18$, PR = 2/7	. 281
Figure E.26 – Binomial cumulative probability function for $N = 100$, PR = 0,125	. 285
Figure E.27 – Binomial cumulative probability function for $N = 82$, PR = 2/7	. 285
Figure F.1 – Limits for brief exposure ($t < 360$ s), seeTable F.1, divided by the corresponding time interval t and normalized with the value obtained for t up to 360 s	289
Figure F.2 – <i>F</i> PR_min as a function of the pulse duration assuming a whole-body averaging time of 30 min	. 293
Figure F.3 – <i>F</i> PR_min as a function of the pulse duration assuming an averaging time of 6 min	. 293
Figure G.1 – Examples of general assessment schemes	. 297
Figure G.2 – Target uncertainty scheme overview	. 298
Figure G.3 – Probability of the true value being above (respectively below) the evaluated value depending on the confidence level assuming a normal distribution	302
Figure G.4 – Plot of the calibration factors for E (not E^2) provided from an example calibration report for an electric field probe	305
Figure G.5 – Computational model used for the variational analysis of reflected RF fields from the front of a surveyor	. 311
Figure G.6 – EUT positioning equipment and different positioning errors	317

Figure G.7 – Physical model of small-scale fading variations	320
Figure G.8 – Example of E-field strength variations in line of sight of an antenna operating at 2,2 GHz	320
Figure G.9 – Error at 95 % on average power estimation	321
Figure G.10 – 343 measurement points building a cube (centre) and different templates consisting of a different number of positions	323
Figure G.11 – Moving a template (Line 3) through the cube	324
Figure G.12 – Standard deviations for GSM 900, DCS 1800 and UMTS	326
Figure G.13 – Simulation arrangement	328
Figure G.14 – Body influence	328
Figure G.15 – Simulation arrangement	329
Table 1 – Quick start guide evaluation steps	41
Table 2 – Example of product installation classes where a simplified evaluationprocess is applicable (based on ICNIRP general public limits [1] and [2])	57
Table 3 – Exposure metrics validity for evaluation points in each source region	71
Table 4 – Requirements for RF field strength and power density measurements	73
Table 5 – Whole-body SAR exclusions based on RF power levels	73
Table 6 – Requirements for SAR measurements	74
Table 7 – Applicability of computation methods for source-environment regions of Figure 16	75
Table 8 – Requirements for computation methods	75
Table A.1 – Definition of source regions	86
Table A.2 – Default source region boundaries	86
Table A.3 – Source region boundaries for antennas with maximum dimension less than 2,5 λ	87
Table A.4 – Source region boundaries for linear/planar antenna arrays with a maximum dimension greater than or equal to 2,5 λ	87
Table A.5 – Source region boundaries for equiphase radiation aperture (e.g. dish) antennas with maximum reflector dimension much greater than a wavelength	88
Table A.6 – Source region boundaries for radiating cables	88
Table A.7 – Far-field distance <i>r</i> measured in metres as a function of angle β	90
Table A.8 – Guidance on selecting between computation and measurement approaches	91
Table A.9 – Guidance on selecting between broadband and frequency selective measurement	92
Table A.10 – Guidance on selecting RF field strength measurement procedures	93
Table A.11 – Guidance on selecting computation methods	94
Table A.12 – Guidance on specific evaluation method ranking	95
Table B.1 – Dimension variables	97
Table B.2 – RF power variables	97
Table B.3 – Antenna variables	98
Table B.4 – Exposure metric variables	98
Table B.5 – Broadband measurement system minimum requirements	111
Table B.6 – Frequency selective measurement system minimum requirements	112

Table B.7 – Example template for estimating the expanded uncertainty of an in-situ RFfield strength measurement that used a frequency selective equipment	132
Table B.8 – Example template for estimating the expanded uncertainty of an in-situ RFfield strength measurement that used a broadband equipment	133
Table B.9 – Example template for estimating the expanded uncertainty of a laboratory- based RF field strength or power density measurement using the surface scanning method	134
Table B.10 – Example template for estimating the expanded uncertainty of a laboratory-based RF field strength or power density measurement using the volume scanning method	135
Table B.11 – Numerical reference SAR values for reference dipoles and flat phantom – All values are normalized to a forward power of 1 W	140
Table B.12 – Phantom liquid volume and measurement volume used for whole-bodySAR measurements [61], [77]	143
Table B.13 – Correction factor to compensate for a possible bias in the obtained general public whole-body SAR when assessed using the large box-shaped phantom for child exposure configurations [72]	143
Table B.14 – Measurement uncertainty evaluation template for EUT whole-body SAR test	144
Table B.15 – Measurement uncertainty evaluation template for whole-body SAR system validation	145
Table B.16 – Definition of boundaries for selecting the zone of computation	149
Table B.17 – Input parameters for cylindrical and spherical formulas validation	152
Table B.18 – Applicability of SAR estimation formulas	154
Table B.19 – Calculation of $A(f, d)$	157
Table B.20 – Antenna parameters for SAR estimation formulas verification	159
Table B.21 – Verification data for SAR estimation formulas – front. 866-6396649e0cc/	^{ec} 159
Table B.22 – Verification data for SAR estimation formulas – axial and back	159
Table B.23 – Example template for estimating the expanded uncertainty of a synthetic model and ray tracing RF field strength computation	168
Table B.24 – Synthetic model and ray tracing power density reference results	171
Table B.25 – Example template for estimating the expanded uncertainty of a full wave RF field strength / power density computation	176
Table B.26 – Validation 1 full wave field reference results	178
Table B.27 – Validation 2 full wave field reference results	179
Table B.28 – Example template for estimating the expanded uncertainty of a full wave SAR computation	183
Table B.29 – Validation reference SAR results for computation method	185
Table B.30 – Relevant parameters for performing RF exposure modelling studies of amassive MIMO site or site cluster	195
Table B.31 – Measurement campaign parameters for performing RF exposureassessment of a massive MIMO site or site cluster	197
Table B.32 – Power combination factors applicable to the normalized actual transmitted power CDF in case of combination of multiple independent identical transmitters	199
Table B.33 – Power combination factors applicable to two independent transmitters with a ratio p in amplitude	200
Table C.1 – Relative difference between the measured averaged transmitted power and actual power counter value for systems that allow direct power level measurements	204
	204