

Edition 1.0 2020-09

TECHNICAL REPORT

Wind energy generation systems DARD PREVIEW Part 12-4: Numerical site calibration for power performance testing of wind turbines

> <u>IEC TR 61400-12-4:2020</u> https://standards.iteh.ai/catalog/standards/sist/83e97fe2-9fe0-474a-932a-00ec3134546c/iec-tr-61400-12-4-2020

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2020 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland Tel.: +41 22 919 02 11 info@iec.ch www.jec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

 IEC Customer Service Centre - webstore iecch/csc and collected from this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.
 collected from this publication or collected from the customer Service context the customer S

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 000 terminological entries in English and French, with equivalent terms in 16 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary

67 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

https://standards.iteh.ai/catalog/standards/sist/83e97fe2-9fe0-474a-932a-

00ec3134546c/iec-tr-61400-12-4-2020

Edition 1.0 2020-09

TECHNICAL REPORT

Wind energy generation systems DARD PREVIEW Part 12-4: Numerical site calibration for power performance testing of wind turbines

> <u>IEC TR 61400-12-4:2020</u> https://standards.iteh.ai/catalog/standards/sist/83e97fe2-9fe0-474a-932a-00ec3134546c/iec-tr-61400-12-4-2020

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 27.180

ISBN 978-2-8322-8781-1

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FC	DREWO	RD	4
IN	TRODU	ICTION	6
1	Scop	e	7
2	Norm	native references	7
3	Term	s, definitions, abbreviations and symbols	7
	3.1	Abbreviations	7
	3.2	Symbols and units	8
4	Over	view of Numerical Flow Simulation Approaches	10
	4.1	Linear Flow Models	10
	4.2	Reynolds-averaged Navier-Stokes (RANS) Models	11
	4.3	Large Eddy Simulation (LES) and Hybrid RANS/LES Models	12
5	Exist	ing Guidelines for Numerical Flow Modelling Applications	13
	5.1	General	13
	5.2	AIAA (1998) Guide for the Verification and Validation of Computational Fluid Dynamics Simulations	14
	5.3	Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer – ASME V&V 20-2009	14
	5.4	COST Action 732 "Quality Assurance of Microscale Meteorological Models"	15
	5.5	Architectural Institute of Japan Guidelines General (standards.iteh.ai)	16
	5.5.1	General (Standards.Iten.al)	16
	5.5.2	environment around buildings/r18112-4:2020	16
	5.5.3	Guidebook of recommendations for loads on buildings 2 [19]	16
	5.6	VDI 3783 Part 9 "Environmental meteorology – prognostic microscale wind field mode- evaluation of flow around buildings and obstacles"	16
	5.7	International Energy Agency Task 31 Wakebench – Model Evaluation Protocol for Wind Farm Flow Models	17
	5.8	MEASNET – Evaluation of Site-Specific Wind Conditions	17
6	Sumi	mary of Benchmarking Validation Tests	17
	6.1	General	17
	6.2	DEWI Round Robin on Numerical Flow Simulation in Wind Energy	17
	6.3	Bolund Experiment	18
	6.4	European Wind Energy Association Comparative Resource and Energy Yield Assessment Procedures I and II (2011, 2013)	18
	6.5	IEA Task 31 Wakebench Experiments	19
	6.6	New European Wind Atlas Experiments [32]	19
	6.6.1	Perdigão (double ridge)	19
	6.6.2	Alaiz (complex terrain with a strong mesoscale component)	19
	6.6.3	Østerild (flow over heterogeneous roughness)	19
	6.6.4	Kassel (flow over forested hill)	20
	6.7	Wind Forecast Improvement Project 2 [34]	
	6.8	Wind Tunnel Test Validation Data	20
	6.8.1	Compilation of Experimental Data for Validation of Microscale Dispersion Models [23]	20
	6.8.2		
	6.8.3		

7		rtant Technical Aspects for Performing Flow Simulations over Terrain for Energy Applications	21
	7.1	General	21
	7.2	Quality of Topographical Input Data	21
	7.3	Computational Domain	21
	7.4	Boundary Conditions for Computational Domain	21
	7.5	Mesh Parameters	21
	7.6	Convergence Criteria	21
	7.7	Atmospheric Stability	21
	7.8	Coriolis Effects	22
	7.9	Obstacles effects	22
	7.10	Suggestion on Model Range Applicability for NSC	22
8	Oper	Issues	22
	8.1	General	22
	8.2	Determination of Flow Correction Factors from Numerical Simulation Results for Power Curve Testing	23
	8.2.1	General	23
	8.2.2	Correlation check for linear regression	23
	8.2.3	Change in correction between adjacent wind direction bins	23
	8.2.4		
		seasons	23
	8.3	Uncertainty quantification. Proposal for Validation Campaign for NSC Procedures	23
	8.4	Proposal for Validation Campaign for NSC Procedures	24
	8.4.1	General	
	8.4.2	Assessment of terrain at the test site 42020	24
	8.4.3	$00_{00}2124546a/jac tr 61400, 12, 4, 2020$	24
Bi	bliograp	hy	26

INTERNATIONAL ELECTROTECHNICAL COMMISSION

WIND ENERGY GENERATION SYSTEMS -

Part 12-4: Numerical site calibration for power performance testing of wind turbines

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, EC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. However, a technical committee may propose the publication of a Technical Report when it has collected data of a different kind from that which is normally published as an International Standard, for example "state of the art".

IEC TR 61400-12-4, which is a Technical Report, has been prepared by IEC technical committee 88: Wind energy generation systems.

The text of this Technical Report is based on the following documents:

Draft TR	Report on voting
88/729/DTR	88/774/RVDTR

Full information on the voting for the approval of this Technical Report can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

IEC TR 61400-12-4:2020 © IEC 2020 - 5 -

A list of all parts of the IEC 61400 series, under the general title *Wind energy generation systems*, can be found on the IEC website.

Future standards in this series will carry the new general title as cited above. Titles of existing standards in this series will be updated at the time of the next edition.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>IEC TR 61400-12-4:2020</u> https://standards.iteh.ai/catalog/standards/sist/83e97fe2-9fe0-474a-932a-00ec3134546c/iec-tr-61400-12-4-2020

INTRODUCTION

IEC 61400-12-1 [1]¹ is the International Standard for power performance measurements for electricity producing wind turbines. It specifies that in complex terrain, a site calibration (SC) is required to find the relation in flow characteristics between the measurement location and the test turbine. This approach requires – in addition to the permanent measurement mast that is used to measure the turbine power curve – installing a temporary mast at the location of the turbine being tested, prior to the turbine installation. The IEC 61400-12-1 approach is frequently used in industrial practice; however, it has a number of disadvantages:

- additional cost of the second mast and analysis of the site calibration results,
- additional time required for the site calibration in the range of 3 months,
- a site calibration decision has to be made before installing the wind turbine.

Due to these disadvantages, there is interest in the industry to find alternative methods for site calibration. One alternative is to use numerical simulations to derive flow correction factors (FCFs), i.e., the relation between wind speed at the wind turbine position and wind speed at the reference meteorological mast position.

The IEC TC 88 committee, "Wind energy generation systems," initiated the work on this document to evaluate the potential application of numerical flow simulations for site calibration, i.e., numerical site calibration (NSC).

With NSC, the flow correction factors are calculated using numerical simulation of the flow. Despite eliminating some of the disadvantages mentioned earlier, NSC brings other challenges:

- dependence on simulation models,
- dependence on the setup of these models 400-12-4:2020
- dependence on the moderer sexpertise standards/sist/83e97fe2-9fe0-474a-932a-
- uncertainty quantification of the model performance.
- The project team (PT 61400-12-4) has outlined the current state of the art in numerical flow modelling and has summarized existing guidelines and past benchmarking experience of

numerical model validation and verification. Based on the work undertaken, the project team identified the important technical aspects for using flow simulations over terrain for wind energy applications as well as the existing open issues including recommendations for further validation through benchmarking tests. The project team concluded that further work is needed before a standard for NSC can be issued.

¹ Numbers in square brackets refer to the Bibliography.

WIND ENERGY GENERATION SYSTEMS -

Part 12-4: Numerical site calibration for power performance testing of wind turbines

1 Scope

This part of IEC 61400, which is a Technical Report, summarizes the current state of the art in numerical flow modelling, existing guidelines and past benchmarking experience in numerical model validation and verification. Based on the work undertaken, the document identifies the important technical aspects for using flow simulation over terrain for wind application as well as the existing open issues including recommendations for further validation through benchmarking tests.

2 Normative references

There are no normative references in this document.

3 Terms, definitions, abbreviated terms and symbols

3.1 Terms and definitions (standards.iteh.ai)

No terms and definitions are listed in this document. <u>IEC TR 61400-12-42020</u>

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

3.2 Abbreviated terms

The following abbreviated terms are used in this document.

AIAA	American Institute of Aeronautics and Astronautics
ABL	atmospheric boundary layer
AEP	annual energy production
AIJ	Architectural Institute of Japan
ALEX17	Alaiz experiment 2017
ASME	American Society of Mechanical Engineers
CEDVAL	Compilation and Experimental Data for Validation of Microscale DispersionModels
CFD	computational fluid dynamics
CHT	computational heat transfer
COST	European Cooperation in Science and Technology
CREYAP	Comparative Resource and Energy Yield Assessment Procedures
DES	detached eddy simulation
DDES	delayed detached eddy simulation
DEWI	Deutsches Windenergie-Institut

DTU	Danish Technical University
EWEA	European Wind Energy Association
EWTL	Environmental Wind Tunnel Laboratory
FCF	flow correction factor
GWh	gigawatt-hour
IEA	International Energy Agency
IEC	International Electrotechnical Commission
LES	large eddy simulation
LIDAR	light detection and ranging
MEASNET	Measuring Network of Wind Energy Institutes
MEP	model evaluation protocol
NEWA	New European Wind Atlas
NSC	numerical site calibration
RANS	Reynolds-averaged Navier-Stokes
RNG	renormalization group
SC	site calibration
SODAR	sound detection and ranging
тс	technical committee
TR	technical report
UQ	uncertainty quantification ards.iteh.ai)
URANS	unsteady Reynolds-averaged Navier-Stokes
V&V	verification and validation https://standards.iteh.a/catalog/standards/sist/83e97fe2-9fe0-474a-932a-
VDI	Verein Deutschereingenieurec-tr-61400-12-4-2020
WAsP	Wind Atlas Analysis and Application Program
WFIP	Wind Forecast Improvement Project
WTG	wind turbine generator

3.3 Symbols and units

Table 1 shows the symbols used in the text and equations in this document.

Symbol	Definition	Unit
\overline{u}_i	$i^{ m th}$ component of filtered wind speed	m/s
\overline{p}	filtered pressure	Pa
μ	molecular viscosity	Pa s
$\mu_{\rm t}$	turbulence viscosity	Pa s
Cs	Smagorinsky constant	-
к	von Karman constant	-
d	distance to the nearest wall	m
Δ	local filter size	m
1	turbulence length scale	m

Table 1 – Symbols used in this document

Symbol	Definition	Unit
l _{RANS}	turbulence length scale obtained from RANS model	m
l_{LES}	turbulence length scale obtained from LES model	m
$f_{\sf d}$	model constant of DDES model	m
$\overline{U_i}$	average component of velocity in the direction $ i$	m/s
<i>u</i> _i	turbulent component of velocity in the direction $ \dot{i} $	m/s
x _i	space variable in the direction i	m
\overline{P}	average pressure	Ра
ρ	density	kg/m ³
ν	kinematic molecular viscosity	m²/s
$\overline{F_i}$	body forces in the direction i	kg m / s
$\overline{u_i u_j}$	Reynolds stresses	m²/s²
δ_{ij}	Kronecker's delta	-
v_T	kinematic turbulence viscosity	m²/s
k	turbulence kinetic energy	m²/s²
L_T	turbulence length scale (standards.itch.ai)	m
P_k	production of k <u>IEC TR 61400-12-4:2020</u> https://standards.iteh.ai/catalog/standards/sist/83e97fe2-9fe0-474a-932a-	m²/s³
ε	dissipation rate of turbulence kinetic energy-61400-12-4-2020	m²/s³
C_{μ}	RANS turbulence model constant	-
$C_{1\varepsilon}$	RANS turbulence model constant	-
$C_{2\varepsilon}$	RANS turbulence model constant	-
σ_{ε}	RANS turbulence model constant	-
Ε	validation comparison error	
$\delta_{\rm model}$	error due to the modelling assumptions	
$\delta_{ m num}$	error due to numerical solution of the equations	
$\delta_{ m input}$	error due to input parameters	
$\delta_{\rm D}$	error in the experimental values	
$u_{\rm val}$	validation standard uncertainty	
u _{num}	numerical solution uncertainty	
u _{input}	input parameters uncertainty	
<i>u</i> _D	experimental value uncertainty	
r	correlation coefficient	-
γ_d	DDES parameter	-

Symbol	Definition	Unit
A ₁	modified DDES constant / stepwise function	-
A ₂	DDES constant	-
K _h	effective horizontal kinematic viscosity	m²/s
K _v	effective vertical kinematic viscosity	m²/s
\tilde{u}_i	velocity perturbation components in the direction $ \dot{l} $	m/s
p	pressure perturbation	Pa
U_{j}	horizontal velocity components of the unperturbed flow in the direction j	m/s
D	rotor diameter	m

4 Overview of numerical flow simulation approaches

4.1 Linear flow models

Since the late 1980s, when computing resources were limited, linear wind flow models have been the standard for wind resource assessment. These models are based on a linearization of the Navier-Stokes equations, which was originally introduced in reference [2]. They were designed to be used reliably in neutral atmospheric conditions over terrain with sufficiently gentle slopes to ensure fully attached flow conditions on all

$$\frac{\Pi_{6}\widetilde{u}_{1}}{11} \text{ Ref} 61400-12-4:2020}$$
https://standards.iteh.ai/caalog/StanQards.its/83397fe2-9fe0-474a-932a-
00ec3134546c/iec-tr-61400-12-4-2020
(1)

$$U_{j}\frac{\partial\tilde{u}_{i}}{\partial x_{j}} = -\frac{\partial}{\partial x_{i}}\frac{\tilde{p}}{\rho} + K_{h}\frac{\partial}{\partial x_{j}}\left(\frac{\partial\tilde{u}_{i}}{\partial x_{j}}\right) + K_{v}\frac{\partial^{2}\tilde{u}_{i}}{\partial x_{3}^{2}}, \text{ for } i = 1,...,3 \text{ and } j = 1,2$$
(2)

Here, $U_j(j=1,2)$ are the horizontal velocity components of the unperturbed flow, $\tilde{u}_i(i=1,...,3)$ are the velocity perturbation components, and \tilde{p} is the pressure perturbation. K_h and K_v are the effective kinematic viscosities in the horizontal and vertical directions.

Linear models perform reasonably well where the wind is not significantly affected by steep slopes, flow separation, thermally driven flows, low-level jets, and other dynamic and nonlinear ABL phenomena.

The Wind Atlas Analysis and Application Program (WAsP) [3] has been the most widely used amongst the linear models. WAsP procedures may be considered as a transfer function model linking the wind speeds at the reference with those at the predicted locations. Significant sources of error could be related to the terrain complexity, massive flow separation, wind direction changes, and varying atmospheric conditions. The latter include, among others, channeling effects, blocking effects, and thermally driven flows (e.g., diurnal sea breezes, downslope winds).

Due to their fast and robust performance, linear models are still used in the wind industry.