

Edition 3.0 2024-07

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Electromagnetic compatibility (EMC) – Part 2-4: Environment – Compatibility levels in power distribution systems in industrial locations for low-frequency conducted disturbances

Compatibilité électromagnétique (CEM) – **Compatibilité dans les réseaux de** Partie 2-4: Environnement – Niveaux de compatibilité dans les réseaux de distribution d'électricité sur des sites industriels pour les perturbations conduites à basse fréquence

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2024 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IEC Secretariat 3, rue de Varembé CH-1211 Geneva 20 Switzerland Tel.: +41 22 919 02 11 info@iec.ch www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service

IEC Products & Services Portal - products.iec.ch

Discover our powerful search engine and read freely all the publications previews, graphical symbols and the glossary. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 500 terminological entries in English and French, with equivalent terms in 25 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

-4.2024

os:/Centre:sales@iec.ch./catalog/standards/iec/0412bcf1-66b1-42ff-9130-ce62cb3793fa/iec-61000-2-4-2024

A propos de l'IEC

La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC

Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié.

Recherche de publications IEC -

webstore.iec.ch/advsearchform

La recherche avancée permet de trouver des publications IEC en utilisant différents critères (numéro de référence, texte, comité d'études, ...). Elle donne aussi des informations sur les projets et les publications remplacées ou retirées.

IEC Just Published - webstore.iec.ch/justpublished

Restez informé sur les nouvelles publications IEC. Just Published détaille les nouvelles publications parues. Disponible en ligne et une fois par mois par email.

Service Clients - webstore.iec.ch/csc

Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions contactez-nous: sales@iec.ch.

IEC Products & Services Portal - products.iec.ch

Découvrez notre puissant moteur de recherche et consultez gratuitement tous les aperçus des publications, symboles graphiques et le glossaire. Avec un abonnement, vous aurez toujours accès à un contenu à jour adapté à vos besoins.

Electropedia - www.electropedia.org

Le premier dictionnaire d'électrotechnologie en ligne au monde, avec plus de 22 500 articles terminologiques en anglais et en français, ainsi que les termes équivalents dans 25 langues additionnelles. Egalement appelé Vocabulaire Electrotechnique International (IEV) en ligne.

Edition 3.0 2024-07

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Electromagnetic compatibility (EMC) – **Compatibility** Part 2-4: Environment – Compatibility levels in power distribution systems in industrial locations for low-frequency conducted disturbances

Compatibilité électromagnétique (CEM) – Partie 2-4: Environnement – Niveaux de compatibilité dans les réseaux de distribution d'électricité sur des sites industriels pour les perturbations conduites à basse fréquence

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 33.100.10; 33.100.20

ISBN 978-2-8322-9416-1

Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

 Registered trademark of the International Electrotechnical Commission Marque déposée de la Commission Electrotechnique Internationale

CONTENTS

	۲D	
NTRODU	CTION	7
1 Scope		8
2 Norma	itive references	g
3 Terms	, definitions and abbreviated terms	9
	General definitions	
	Phenomena-related definitions	
3.3	Abbreviated terms	15
4 Electr	omagnetic environment classes	15
5 Introd	uction to the setting of compatibility levels for different types of omagnetic disturbances	
5.1	General comment	
	/oltage deviations	
	/oltage dips and short interruptions	
	/oltage imbalance	
	ہ۔ Femporary power-frequency variation	
	Harmonics	
	nterharmonics	
5.8	/oltage components at higher frequencies (above 40 th harmonic)	19
	Fransient overvoltages	
5.10	DC component	20
6 Comp	atibility levels	20
Annex A (i	nformative) Explanations and examples for interharmonics	24
A.1	Resolution of non-sinusoidal voltages and currents	24
	Fime varying phenomena	
Annex B (i	nformative) Examples of expected disturbance levels in typical industrial	
B.1		26
	General	
B.2		26
	General	26 26
B.3	General /oltage disturbance levels in industrial networks due to large converters	26 26 28
B.3	General /oltage disturbance levels in industrial networks due to large converters /oltage disturbance levels in industrial networks at high load	
B.3 B.4	General /oltage disturbance levels in industrial networks due to large converters /oltage disturbance levels in industrial networks at high load	
B.3 B.4 B.4.1 B.4.2	General /oltage disturbance levels in industrial networks due to large converters /oltage disturbance levels in industrial networks at high load /oltage dips and short interruptions Description	
B.3 B.4 B.4.1 B.4.2 B.5 Annex C (i	General /oltage disturbance levels in industrial networks due to large converters /oltage disturbance levels in industrial networks at high load /oltage dips and short interruptions Description Adaptation	
B.3 B.4 B.4.1 B.4.2 B.5 Annex C (i mitigation	General /oltage disturbance levels in industrial networks due to large converters /oltage disturbance levels in industrial networks at high load /oltage dips and short interruptions Description Adaptation fransient overvoltages	
B.3 B.4 B.4.1 B.4.2 B.5 Annex C (i mitigation	General /oltage disturbance levels in industrial networks due to large converters /oltage disturbance levels in industrial networks at high load /oltage dips and short interruptions Description Adaptation fransient overvoltages nformative) Interharmonics and voltages at higher frequencies and methods	
B.3 B.4 B.4.1 B.4.2 B.5 Annex C (i mitigation	General /oltage disturbance levels in industrial networks due to large converters /oltage disturbance levels in industrial networks at high load /oltage dips and short interruptions Description Adaptation Fransient overvoltages Informative) Interharmonics and voltages at higher frequencies and methods	
B.3 B.4 B.4.1 B.4.2 B.5 Annex C (i mitigation C.1 C.1.1	General /oltage disturbance levels in industrial networks due to large converters /oltage disturbance levels in industrial networks at high load	
B.3 B.4 B.4.1 B.4.2 B.5 Annex C (i mitigation C.1 C.1.1 C.1.2	General /oltage disturbance levels in industrial networks due to large converters /oltage disturbance levels in industrial networks at high load	
B.3 B.4 B.4.1 B.4.2 B.5 Annex C (i mitigation C.1 C.1.1 C.1.2 C.1.3 C.1.4	General /oltage disturbance levels in industrial networks due to large converters /oltage disturbance levels in industrial networks at high load	
B.3 B.4 B.4.1 B.4.2 B.5 Annex C (i mitigation C.1 C.1.1 C.1.2 C.1.3 C.1.4	General	
B.3 B.4 B.4.1 B.4.2 B.5 Annex C (i mitigation C.1 C.1.1 C.1.2 C.1.3 C.1.3 C.1.4 C.2	General /oltage disturbance levels in industrial networks due to large converters /oltage disturbance levels in industrial networks at high load	
B.3 B.4 B.4.1 B.4.2 B.5 Annex C (i mitigation C.1 C.1.1 C.1.2 C.1.3 C.1.3 C.1.4 C.2 C.2.1	General	

	rmative) Proving compatibility in the frequency range above 2 kHz in networks	39
	rmative) Examples of locations and installations covered by 4	40
	neral	
-	ed locations	-
	amples for industrial locations	
Annex F (info	rmative) Rationale for increased individual even and triplen compatibility splitting class 2 into class 2a, class 2b and class 2L	
	ionale for increased individual even and triplen compatibility levels	
F.1.1	Target	
F.1.2	The needs of modern power electronic equipment	
F.1.3	Maintaining the overall disturbance level	45
F.2 Rat	ionale for splitting class 2 into class 2a, class 2b and class 2L	45
F.2.1	Target	45
F.2.2	Class 2a	45
F.2.3	Class 2b	
F.2.4	Class 2L	46
Bibliography.		47
classes in diff Figure 2 – Ex	amples of the application of different electromagnetic environment erent industrial locations ample of different parts of an installation separated by filters, where	
	romagnetic environment classes are applied	16
-	erharmonic compatibility levels (flickermeter response for <i>P</i> st = 1 related descent lamps)	23
Figure B.1 – I	Example of power distribution in industry with rolling mills	27
Figure B.2 – I	Example of power distribution in the paper industry	0.0
	Example of power distribution in a generic manufacturing industry	
-	TI (CBEMA) – Curve of tolerance envelope of ITE	
-	Example of class 1 environment	
•	Example of class 2a and class 2b environments	
	Example of an LV grid in a building supplied by a dedicated transformer	
-		41
	Example of an LV grid in a building including residential and industrial	42
	Example of an LV grid for a data center	
•	Emission spectrum of an active infeed converter	
rigule i . i – i		
	npatibility levels for voltage tolerance, voltage imbalance and power- iations	20
	npatibility levels for harmonics – Harmonic voltage components	
	npatibility levels for total voltage harmonic distortion	
Table 4 – Cor	npatibility levels for low voltage networks in the frequency range from z	
	npatibility levels for low voltage networks in the frequency range from kHz	22

IEC 61000-2-4:2024 © IEC 20)24
-----------------------------	-----

Table B.2 – Voltage disturbance levels in a typical manufacturing industry	29
Table C.1 – Indicative values for interharmonic voltages in low-voltage networks with	
respect to the flicker effect	. 36

- 4 -

iTeh Standards (https://standards.iteh.ai) Document Preview

IEC 61000-2-4:2024

https://standards.iteh.ai/catalog/standards/iec/0412bcf1-66b1-42ff-9130-ce62cb3793fa/iec-61000-2-4-2024

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ELECTROMAGNETIC COMPATIBILITY (EMC) -

Part 2-4: Environment – Compatibility levels in power distribution systems in industrial locations for low-frequency conducted disturbances

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
 - 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
 - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
 - 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 61000-2-4 has been prepared by subcommittee 77A: EMC – Low frequency phenomena, of IEC technical committee 77: Electromagnetic compatibility. It is an International Standard.

This third edition cancels and replaces the second edition published in 2002. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) introduction of new classes 2a, 2b and 2L (former class 2);
- b) modification of existing compatibility levels for class 3;
- c) addition of compatibility levels in the frequency range 2 kHz to 150 kHz;

d) addition of compatibility levels using a new quantity: partial weighted harmonic distortion (PWHD).

- 6 -

The text of this International Standard is based on the following documents:

Draft	Report on voting
77A/1215/FDIS	77A/1221/RVD

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

A list of all parts in the IEC 61000 series, published under the general title *Electromagnetic compatibility* (*EMC*), can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn, or
- revised.

IMPORTANT – The "colour inside" logo on the cover page of this document indicates

https://

IMPORTANT – The "colour inside" logo on the cover page of this document indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

2024

INTRODUCTION

IEC 61000 is published in separate parts according to the following structure:

Part 1: General

General considerations (introduction, fundamental principles) Definitions, terminology

Part 2: Environment

Description of the environment

Classification of the environment

Compatibility levels

Part 3: Limits

Emission limits

Immunity limits (in so far as they do not fall under the responsibility of the product committees)

Part 4: Testing and measurement techniques

Measurement techniques **iTeh Standards**

Part 5: Installation and mitigation guidelines and siteh.ai)

Installation guidelines

Mitigation methods and devices

Part 6: Generic standards

https://standards.iteh.ai/catalog/standards/iec/0412bcf1-66b1-42ff-9130-ce62cb3793fa/iec-61000-2-4-2024 Part 9: Miscellaneous

Each part is further subdivided into several parts, published either as International Standards, technical specifications or technical reports, some of which have already been published as sections. Others will be published with the part number followed by a dash and a second number identifying the subdivision (example: IEC 61000-3-11).

Detailed information on the various types of disturbances that can be expected on public power supply systems can be found in IEC 61000-2-1 and IEC 61000-2-12.

ELECTROMAGNETIC COMPATIBILITY (EMC) -

Part 2-4: Environment – Compatibility levels in power distribution systems in industrial locations for low-frequency conducted disturbances

1 Scope

This part of IEC 61000 is related to conducted disturbances in the frequency range from 0 kHz to 150 kHz. It gives compatibility levels in differential mode (L-L and L-N) for industrial locations, with a nominal voltage up to 35 kV and a nominal frequency of 50 Hz or 60 Hz.

NOTE 1 Industrial locations are defined in 3.1.8.

Power distribution systems on ships, aircraft, offshore platforms and railways are not included.

NOTE 2 See also Annex E. The compatibility levels specified in this document apply at the in-plant point of coupling (IPC). The level of the low-frequency disturbances at the terminals of equipment receiving its supply from the IPC is generally assumed to be similar to the disturbance level at the IPC itself. However, in some situations this is not the case, particularly when a long feeder is dedicated to the supply of a particular load, or when a disturbance is generated or amplified within the installation of which the equipment forms a part.

Compatibility levels are specified for the types of low-frequency electromagnetic disturbances expected at any in-plant point of coupling (IPC) within industrial locations, for guidance in the definition of:

a) limits for disturbance emissions in industrial power distribution systems (including the planning levels defined in 3.1.5);

NOTE 3 A very wide range of conditions is possible in the electromagnetic environments of industrial networks. These are approximated in this document by the three classes described in Clause 4. However, it is the responsibility of the operator of such a network to take account of the particular electromagnetic and economic conditions, including -20 equipment characteristics, in setting the above-mentioned limits.

b) immunity levels for the equipment within these systems.

The disturbance phenomena considered are:

- voltage deviations;
- voltage dips and short interruptions;
- voltage imbalance;
- power-frequency variations;
- harmonics up to order 40;
- interharmonics up to the 40th harmonic;
- voltage components above the 40th harmonic up to 150 kHz;
- DC component;
- transient overvoltages.

The compatibility levels are given for different classes of environment determined by the characteristics of the supply network and loads.

NOTE 4 Compatibility levels at the point of common coupling (PCC) on public networks are specified in IEC 61000-2-2 for low-voltage networks and IEC 61000-2-12 for medium-voltage networks. IEC TR 61000-3-6 and IEC TR 61000-3-7 describe the approach of power distribution system operators to the limitation of emissions from installations and large loads.

IEC 61000-2-4:2024 © IEC 2024 - 9 -

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 61000-2-2:2002, Electromagnetic compatibility (EMC) – Part 2-2: Environment – Compatibility levels for low-frequency conducted disturbances and signalling in public lowvoltage power supply systems IEC 61000-2-2:2002/AMD1:2017 IEC 61000-2-2:2002/AMD2:2018

IEC 61000-2-12, Electromagnetic compatibility (EMC) – Part 2-12: Environment – Compatibility levels for low-frequency conducted disturbances and signalling in public medium-voltage power supply systems

IEC 61000-4-7, Electromagnetic compatibility (EMC) – Part 4-7: Testing and measurement techniques – General guide on harmonics and interharmonics measurements and instrumentation, for power supply systems and equipment connected thereto

CISPR 16-1-1, Specification for radio disturbance and immunity measuring apparatus and methods – Part 1-1: Radio disturbance and immunity measuring apparatus – Measuring apparatus

CISPR 16-2-1, Specification for radio disturbance and immunity measuring apparatus and methods – Part 2-1: Methods of measurement of disturbances and immunity – Conducted disturbance measurements

Terms, definitions and abbreviated terms

IEC 61000-2-4:2024

ttps:/For the purposes of this document, the following terms and definitions apply. 3fa/iec-61000-2-4-2024

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- IEC Electropedia: available at https://www.electropedia.org/
- ISO Online browsing platform: available at https://www.iso.org/obp

3.1 General definitions

3.1.1

3

electromagnetic disturbance

electromagnetic phenomenon that can degrade the performance of a device, equipment or system

[SOURCE: IEC 60050-161:2018, 161-01-05, modified – in the definition the words "or adversely affect living or inert matter" have been deleted and Note 1, Note 2, and Note 3 have been deleted.]

3.1.2

disturbance level

amount or magnitude of an electromagnetic disturbance, measured and evaluated in a specified way

3.1.3 electromagnetic compatibility EMC

ability of an equipment or system to function satisfactorily in its electromagnetic environment without introducing intolerable electromagnetic disturbances to anything in that environment

Note 1 to entry: Electromagnetic compatibility is a condition of the electromagnetic environment such that, for every phenomenon, the disturbance emission level is sufficiently low and immunity levels are sufficiently high so that all devices, equipment and systems operate as intended.

Note 2 to entry: Electromagnetic compatibility is achieved only if emission and immunity levels are controlled such that the immunity level of devices, equipment and systems, at any location, are not exceeded by the disturbance level at that location, resulting from the cumulative emission of all sources and other factors such as circuit impedances. Conventionally, compatibility is said to exist if the probability of the departure from intended performance or of the adverse effect is sufficiently low. See IEC 61000-2-1:1990, Clause 4.

Note 3 to entry: Where the context requires it, compatibility is intended to refer to a single disturbance or class of disturbances.

Note 4 to entry: Electromagnetic compatibility is a term used also to describe the field of study of the adverse electromagnetic effect which devices, equipment and systems undergo from each other or from electromagnetic phenomena.

[SOURCE: IEC 60050-161:2018, 161-01-07, modified – Note 1 to Note 4 have been added.]

3.1.4

(electromagnetic) compatibility level

specified electromagnetic disturbance level used as a reference level in a specified environment for coordination in the setting of emission and immunity limits

Note 1 to entry: By convention, the compatibility level is chosen so that there is only a small probability that it will be exceeded by the actual disturbance level.

[SOURCE: IEC 60050-161:1990, 161-03-10, modified – the last sentence of Note 1 is deleted because it is less relevant in industrial locations compared to public locations.]

3.1.5

planning level ai/catalog/standards/iec/0412bcf1-66b1-42ff-9130-ce62cb3793fa/iec-61000-2-4-2024

level of a particular disturbance in a particular environment, adopted as a reference value for the limits to be set for the emission of large loads and installations, in order to coordinate those limits with all the limits adopted for equipment intended to be connected to the power supply system

Note 1 to entry: The planning level is locally specific and is adopted by those responsible for planning and operating the power supply network in the relevant area. (For further explanation, see IEC 61000-2-2:2002, Annex A and IEC 61000-1-2.)

3.1.6

industrial and private power distribution system

distribution network that is separated by at least one separation transformer from the public power supply system to which other customer installations are connected

3.1.7 point of common coupling PCC

point on a public power supply network, electrically nearest to a particular load, at which other loads are, or could be, connected

Note 1 to entry: The PCC is usually the point for which electromagnetic compatibility in public networks is to be considered.

[SOURCE: IEC 60050-161:1990, 161-07-15, modified – the two notes have been deleted, the content of Note 2 is integrated in the definition and a new note has been added.]

3.1.8

industrial location

location characterized by an installation consisting of a separate power distribution network, supplied by a high- or medium-voltage transformer, dedicated for the supply of this installation

Note 1 to entry: Industrial locations can generally be described by the existence of an installation with one or more of the following characteristics:

- significant amount of electrical power generated, transmitted and/or consumed;
- frequent switching of heavy inductive or capacitive loads;
- high currents and associated magnetic fields;
- presence of industrial, high power scientific and medical (ISM) equipment (for example, welding machines).

The electromagnetic environment at an industrial location is predominantly produced by the equipment and installation present at the location. There are types of industrial locations where some of the electromagnetic phenomena appear in a more severe degree than in other installations.

Example locations include metalworking, pulp and paper, chemical plants, car production, farm building, high voltage areas of airports.

Note 2 to entry: The connection between location and electromagnetic environment is given in 3.1.8.

[SOURCE: IEC 61000-6-4:2018, 3.1.12, modified – in the definition, "an installation consisting of" has been added, and the term reference in Note 2 has been updated.]

3.1.9 electromagnetic environment Teh Standard

totality of electromagnetic phenomena existing at a given location

Note 1 to entry: In general, the electromagnetic environment is time-dependent and its description can be better described with a statistical approach.

Note 2 to entry: It is very important not to confuse the concept of electromagnetic environment with the surrounding location.

SOURCE: IEC 61000-6-4:2018, 3.1.13.] 2bcf1-66b1-42ff-9130-ce62cb3793fa/iec-61000-2-4-2024

3.1.10 in-plant point of coupling IPC

point inside a non-public power distribution system, electrically nearest to a given load, at which loads from other branches are, or could be, connected

Note 1 to entry: The IPC is usually the point for which electromagnetic compatibility in industrial networks is to be considered.

3.2 Phenomena-related definitions

NOTE 1 The definitions below that relate to harmonics are based on the analysis of system voltages or currents by the discrete Fourier transform method (DFT). This is the practical application of the Fourier transform as defined in IEV 101-13-09. See Annex A.

NOTE 2 The Fourier transform of a function of time, whether periodic or non-periodic, is a function in the frequency domain and is referred to as the frequency spectrum of the time function, or simply spectrum. If the time function is periodic the spectrum is constituted of discrete lines (or components). If the time function is not periodic, the spectrum is a continuous function indicating components at all frequencies.

NOTE 3 Other definitions related to harmonics or interharmonics are given in IEC 60050 (all parts) and other standards. Some of those other definitions, although not used in this document, are discussed in Annex A.

3.2.1

fundamental frequency

frequency, in the spectrum obtained from a Fourier transform of a time function, to which all the components of this spectrum are referred

- 12 -

Note 1 to entry: In the case of a periodic function, the fundamental frequency is generally equal to the frequency of the function itself (see Clause A.1.). For the purposes of this document, the fundamental frequency is also the same as the power supply frequency.

3.2.2 fundamental component fundamental

spectral component of a periodic time function whose frequency is equal to the fundamental frequency

3.2.3

harmonic frequency

frequency which is an integer multiple of the fundamental frequency

3.2.4

harmonic order

ratio of the harmonic frequency to the fundamental frequency

Note 1 to entry: The recommended notation for harmonic order is "h".

3.2.5

harmonic component

spectral component of a periodic time function whose frequency is a harmonic frequency

Note 1 to entry: Harmonic components are often referred to as harmonics.

Note 2 to entry: See IEC 61000-4-7 for measuring conditions.

3.2.6

interharmonic frequency any frequency between two consecutive harmonic frequencies

3.2.7

interharmonic order

ratio of an interharmonic frequency to the fundamental frequency

Note 1 to entry: This ratio is not an integer and can be indicated with "m".

3.2.8

interharmonic component

spectral component having an interharmonic frequency

Note 1 to entry: For brevity, such a component can be referred to simply as an interharmonic.