

Edition 1.0 2023-06

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Test methods for electrical and magnetic properties of magnetic powder cores

Méthodes d'essai des propriétés électriques et magnétiques des noyaux en poudre magnétique

<u>IEC 63300:2023</u> https://standards.iteh.ai/catalog/standards/sist/900440be-80cc-433f-8196-b86f13720850/iec-63300-2023

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2023 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IFC Secretariat 3, rue de Varembé CH-1211 Geneva 20 Switzerland

Tel.: +41 22 919 02 11 info@iec.ch www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.jec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

IEC Products & Services Portal - products.iec.ch

Discover our powerful search engine and read freely all the publications previews. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org The world's leading online dictionary on electrotechnology, containing more than 22 300 terminological entries in English and French, with equivalent terms in 19 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

A propos de l'IEC

La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC

Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié.

Recherche de publications IEC -

webstore.iec.ch/advsearchform

La recherche avancée permet de trouver des publications IEC en utilisant différents critères (numéro de référence, texte, comité d'études, ...). Elle donne aussi des informations sur les projets et les publications remplacées ou retirées.

IEC Just Published - webstore.iec.ch/justpublished

Restez informé sur les nouvelles publications IEC. Just Published détaille les nouvelles publications parues. Disponible en ligne et une fois par mois par email.

Service Clients - webstore.iec.ch/csc

Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions contactez-nous: sales@iec.ch.

IEC Products & Services Portal - products.iec.ch

Découvrez notre puissant moteur de recherche et consultez gratuitement tous les aperçus des publications. Avec un abonnement, vous aurez toujours accès à un contenu à jour adapté à vos besoins.

Electropedia - www.electropedia.org

Le premier dictionnaire d'électrotechnologie en ligne au monde, avec plus de 22 300 articles terminologiques en anglais et en français, ainsi que les termes équivalents dans 19 langues Egalement appelé additionnelles. Vocabulaire Electrotechnique International (IEV) en ligne.

Edition 1.0 2023-06

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Test methods for electrical and magnetic properties of magnetic powder cores

Méthodes d'essai des propriétés électriques et magnétiques des noyaux en poudre magnétique

<u>EC 63300:2023</u>

https://standards.iteh.ai/catalog/standards/sist/900440be-80cc-433f-8196-b86f13720850/iec-63300-2023

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 29.030, 29.100.10

ISBN 978-2-8322-7139-1

Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

 Registered trademark of the International Electrotechnical Commission Marque déposée de la Commission Electrotechnique Internationale

CONTENTS

FC	DREWO	RD	6
INTRODUCTION			
1	Scop	е	9
2	Norm	native references	9
3	Term	s. definitions. abbreviated terms and symbols	9
-	3 1	Terms and definitions	q
	3.2	Abbreviated terms	.0
	3.3	Symbols	10
4	Instru	uments and equipment	10
	4 1	General provisions	10
	4.2	Excitation source	10
	4.2.1	General provisions.	10
	4.2.2	Sinusoidal wave excitation source	11
	4.2.3	Square wave excitation source	11
	4.2.4	Calculation of magnetic flux density	12
	4.3	Measuring equipment.	12
	4.3.1	General provisions	12
	4.3.2	Voltmeter	12
	4.3.3	Data acquisition unit	13
	4.4	Sensor	13
	4.4.1	Sampling resistor	13
	4.4.2	Current transformer	13
	4.5	Other descriptions	14
	4.5.1	Intermediate connector	14
	4.5.2	Thermostat	14
5	Sam	ble	14
	5.1	Magnetic core	14
	5.2	Winding	14
	5.2.1	Winding conditions	14
	5.2.2	Dual winding	15
	5.2.3	Single winding	15
	5.3	Mounting of sample	16
_	5.4	Parameters of sample	16
6	Meas	suring conditions	16
	6.1	Relation to practice	16
	6.2	Effective parameters	17
_	6.3	Magnetic state of measurement	17
7	Test	methods for power loss	17
	7.1	Summary	17
	7.2	AC power method	18
	7.3	DC power method	18
-	7.4	Calorimetric method	18
8	Test	methods for effective permeability	18
	8.1	Summary	18
	8.2	Large signal AC method	19
	8.3	Impedance method	19

8	3.4	Pulse method	19
9	Test	method for effective complex permeability	19
10	Test	method for quality factor (Q)	20
11	Verif	ication of measurement accuracy	20
Ann	nex A ((informative) AC power method	21
A	۹.1	Overview	21
A	۹.2	Basic circuit diagram	21
A	۹.3	Measuring device	22
	A.3.1	High frequency excitation source	22
	A.3.2	Exciting winding N ₁ and voltage sensing winding N ₂	22
	A.3.3	Sensing resistor R	22
	A.3.4	Data collector	22
ŀ	۹.4	Test steps	22
ŀ	4.5	Measuring principle	22
ŀ	A.6	Error analysis	23
ŀ	۹. <i>۲</i>	Matters to consider	24
	A.7.1	Measurement error	24
,	A.7.2	Specific test methods	24
F	ч.о Д Я 1	B-H analyzer method	24 24
	A 8 2	Power analyzer method	24
	A.8.3	Capacitive reactive compensation method	
A	۹.9	Measurement for quality factor (<i>O</i>)	
Ann	nex B ((informative) DC power method	27
E	3.1//	Overview	
Ē	3.1 _{s://s} 3.2	OverviewBasic circuit diagram	
E	3.1 3.2 3.3	Overview Basic circuit diagram	
E E	3.1 3.2 3.3 B.3.1	Overview	27 27 27 27
E E	3.1 3.2 3.3 B.3.1 B.3.2	Overview	27 27 27 27 27
E E E	3.1 3.2 3.3 B.3.1 B.3.2 B.3.3	Overview	27 27 27 27 27 27 27
E E	3.1 3.2 3.3 B.3.1 B.3.2 B.3.3 B.3.4	Overview	27 27 27 27 27 27 27 27 27 28
E	3.1 3.2 3.3 8.3.1 8.3.2 8.3.3 8.3.4 3.4	Overview	27 27 27 27 27 27 27 27 27 28 28
E E E	3.1 3.2 3.3 B.3.1 B.3.2 B.3.3 B.3.4 3.4 3.5	Overview	27 27 27 27 27 27 27 27 27 28 28 28 28
E E E E E	3.1 3.2 3.3 B.3.1 B.3.2 B.3.3 B.3.4 3.4 3.5 3.6	Overview	27 27 27 27 27 27 27 27 28 28 28 28 28 29
E E E E E	3.1 3.2 3.3 B.3.1 B.3.2 B.3.3 B.3.4 3.4 3.5 3.6 B.6.1	Overview	27 27 27 27 27 27 27 27 27 28 28 28 28 28 29 29
E	3.1 3.2 3.3 B.3.1 B.3.2 B.3.3 B.3.4 3.4 3.5 3.6 B.6.1 B.6.2	Overview	27 27 27 27 27 27 27 27 28 28 28 28 28 29 29 29 29
E E E E Ann	3.1 3.2 3.3 B.3.1 B.3.2 B.3.3 B.3.4 3.4 3.5 3.6 B.6.1 B.6.2 nex C (Overview	27 27 27 27 27 27 27 27 27 28 28 28 28 29 29 29 29 30
E E E Ann C	3.1 3.2 3.3 B.3.1 B.3.2 B.3.3 B.3.4 3.4 3.5 3.6 B.6.1 B.6.2 nex C (C.1	Overview. Basic circuit diagram. Measuring device. DC voltage source U _i . DC/AC inverter Exciting winding N ₁ DC ammeter and DC voltmeter for measuring the average value. Test steps. Matters to consider Inverter loss. Deduction of winding loss Cinformative) Calorimetric method	27 27 27 27 27 27 27 27 28 28 28 28 29 29 29 29 29 30 30 30
E E E E Ann ((3.1 3.2 3.3 B.3.1 B.3.2 B.3.3 B.3.4 3.4 3.5 3.6 B.6.1 B.6.2 nex C for the set of the se	Overview. Basic circuit diagram. Measuring device. DC voltage source U _i . DC/AC inverter Basic circuit diagram. DC ammeter and DC voltmeter for measuring the average value . Test steps. Measuring principle. Matters to consider Inverter loss. Deduction of winding loss (informative) Calorimetric method Overview. Basic circuit diagram.	27 27 27 27 27 27 27 27 27 28 28 28 28 29 29 29 29 29 30 30 30 30
E E E Ann C C C	3.1 3.2 3.3 B.3.1 B.3.2 B.3.3 B.3.4 3.4 3.5 3.6 B.6.1 B.6.2 iex C (C.1 C.2 C.3	Overview. Basic circuit diagram. Measuring device. DC voltage source U _i . DC/AC inverter Basic circuit diagram. DC ammeter and DC voltmeter for measuring the average value Test steps. Measuring principle. Matters to consider	27 27 27 27 27 27 27 27 28 28 28 28 29 29 29 29 29 29 30 30 30 30 30 20
E E E Ann () () ()	3.1 3.2 3.3 B.3.1 B.3.2 B.3.3 B.3.4 3.4 3.5 3.6 B.6.1 B.6.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0	Overview	27 27 27 27 27 27 27 27 27 28 28 28 28 29 29 29 29 29 29 29 30 30 30 30 30 30 30
E E E Ann C C	3.1 3.2 3.3 B.3.1 B.3.2 B.3.3 B.3.4 3.4 3.5 3.6 B.6.1 B.6.2 iex C (C.1 C.2 C.3 C.3.1 C.3.2 C.3.2	Overview	27 27 27 27 27 27 27 27 28 28 28 28 29 29 29 29 29 29 29 30 30 30 30 30 30 30
E E E Ann () ()	3.1 3.2 3.3 B.3.1 B.3.2 B.3.2 B.3.3 B.3.4 3.4 3.5 3.6 B.6.1 B.6.2 0.1 C.1 C.2 C.3 C.3.1 C.3.2 C.3.2 C.3.2 C.3.2	Overview	27 27 27 27 27 27 27 27 28 28 28 28 29 29 29 29 29 29 29 30 30 30 30 30 30 30 30 30
E E E Ann C C C	3.1 3.2 3.3 B.3.1 B.3.2 B.3.3 B.3.4 3.4 3.5 3.6 B.6.1 B.6.2 0.1 C.1 C.2 C.3 C.3.1 C.3.2 C.3.2 C.3.4 C.3.2 C.3.5	Overview	27 27 27 27 27 27 27 28 28 28 28 29 29 29 29 29 29 29 29 30 30 30 30 30 30 30 30 30 30 30 30 31 31
E E E Ann C C C	3.1 3.2 3.3 B.3.1 B.3.2 B.3.3 B.3.4 3.4 3.5 3.6 B.6.1 B.6.2 0.3 C.3 C.3.2 C.3.	Overview Basic circuit diagram Measuring device DC voltage source Ui DC/AC inverter Exciting winding N1 DC ammeter and DC voltmeter for measuring the average value Test steps Measuring principle Matters to consider Inverter loss Deduction of winding loss (informative) Calorimetric method Overview Basic circuit diagram Measuring device Excitation source Temperature sensor Thermal insulated container Thermal medium Sample	27 27 27 27 27 27 27 27 28 28 28 28 29 29 29 29 29 29 29 29 30 30 30 30 30 30 30 30 30 30 30 31 31 31
	3.1 3.2 3.3 B.3.1 B.3.2 B.3.3 B.3.4 3.4 3.5 3.6 B.6.1 B.6.2 0.2 0.3 C.3.1 C.3.2 C.3.2 C.3.2 C.3.2 C.3.5 C.3.4 C.3.5 C.3.4 C.3.5 C.3.2 C.3.5 C.5 C.5 C.5 C.5 C.5 C.5 C.5 C	Overview Overview Basic circuit diagram Overview Measuring device DC voltage source Ui DC/AC inverter Exciting winding N1 DC ammeter and DC voltmeter for measuring the average value Test steps Measuring principle Matters to consider Inverter loss Deduction of winding loss Overview Basic circuit diagram Measuring device Excitation source Temperature sensor Thermal insulated container Thermal medium Sample Test steps Measuring principle	27 27 27 27 27 27 27 28 28 28 28 28 29 29 29 29 29 29 29 30 30 30 30 30 30 30 30 30 30 30 30 31 31 31 31 31

C.7 Spe	ecific test methods	32
C.7.1	Calibration calorimetric method	32
C.7.2	Comparative calorimetric method	33
Annex D (info	ormative) Large signal AC method	35
D.1 Ov	erview	35
D.2 Bas	sic circuit diagram	35
D.3 Me	asuring device	
D.3.1	High-frequency excitation source	36
D.3.2	Exciting winding N ₁ and voltage sensing winding N ₂	36
D.3.3	Sampling resistor R	
D.3.4	Data collector	
D.4 Tes	st steps	
D.5 Me	asuring principle	
D.6 Ma	tters to consider	
Annex E (info	rmative) Impedance method	
E.1 Ov	erview	
E.2 Bas	sic circuit diagram	
E.3 Me	asuring device	
E.3.1	Impedance analyzer or LCR meter	
E.3.2	Exciting winding N ₁ .	
F4 Tes	st steps	39
E.5 Me	asuring principle 1910 910 Site 91	
E.6 Ma	tters to consider	
Annex F (info	rmative) Pulse method	
F 1	erview	40
E 2 Bas	sic circuit diagram	30/lec- 40 40
F3 Me	ossuring device	40
F 3 1	Sampling resistor R	40
F 3 2	Switch S	40
F 3 3	Exciting winding N ₄	41
F 2 4		
Г.J.4 Г.4 Тол		
F.4 16:		
F.5 Me	ttere te consider	44 ا 4 م
	metric to consider	42 12
		43
Annex H (info	ormative) Imposing of DC bias on the core	
H.1 Ov	erview	46
H.2 Ma	tters to consider	
Annex I (infor	mative) References	49
I.1 Ov	erview	49
I.2 Eff	ect of rise time of square wave excitation on the core loss	49
I.3 Pha	ase error limit	50
I.4 De	rivation of Formula (8)	51
1.5 SR	F consideration of the sample	52
Bibliography.		54

Figure A.1 – Diagram of AC power method	21
Figure A.2 – Circuit diagram of reactive power compensation of capacitor	25
Figure A.3 – Phasor diagram of reactive power compensation of capacitor	26
Figure B.1 – Diagram of DC meter method	27
Figure C.1 – Diagram of the calorimetric method	30
Figure C.2 – Diagram of the calibration calorimetric method	33
Figure C.3 – Diagram of the comparative calorimetric method	34
Figure D.1 – Diagram of large signal AC method	35
Figure E.1 – Diagram of impedance method	38
Figure F.1 – Diagram of pulse method	40
Figure F.2 – Exciting voltage and current waveform on the exciting winding	42
Figure G.1 – Diagram of air-core inductor	44
Figure H.1 – Diagram of imposition of DC bias	47
Figure I.1 – Square wave excitation source	50
Figure I.2 – Diagram of the ratio error and phase error	50
Figure I.3 – Equivalent circuit model of sample	52

Table 1 – Comparisons of measuring methods for power loss	17
Table I.1 – Example for k , α , β and other parameters	50
Table I.2 – Example of core losses error with different <i>t</i> r	50
Table I.3 – Example of core losses measuring error and ratio error for the phase er	ror51
Table I.4 – Example of ΔL at different frequencies 2023	53

INTERNATIONAL ELECTROTECHNICAL COMMISSION

TEST METHODS FOR ELECTRICAL AND MAGNETIC PROPERTIES OF MAGNETIC POWDER CORES

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at https://patents.iec.ch . IEC shall not be held responsible for identifying any or all such patent rights.

IEC 63300 has been prepared by IEC technical committee 51: Magnetic components, ferrite and magnetic powder materials. It is an International Standard.

The text of this International Standard is based on the following documents:

Draft	Report on voting
51/1419/CDV	51/1436/RVC

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/standardsdev/publications.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The "colour inside" logo on the cover page of this document indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

iTeh STANDARD PREVIEW (standards.iteh.ai)

IEC 63300:2023

https://standards.iteh.ai/catalog/standards/sist/900440be-80cc-433f-8196-b86f13720850/iec-63300-2023

INTRODUCTION

Magnetic powder cores have the characteristics of low relative permeability, high saturated flux density and low loss. Therefore, compared with ungapped ferrite, the equivalent impedance of a sample of magnetic powder core is much smaller, and the magnetizing current is very large, so the required excitation source will have both high frequency and high-power capacity, which is difficult to obtain in practice. Moreover, the impedance angle of a magnetic powder core under test is very close to 90°, and this results in great difficulties to obtain accurate measurements of power loss.

The IEC 62044 series provides measuring methods of magnetic properties at low and high excitation levels for magnetic cores made of magnetic oxides or metallic powders. However, the methods introduced in the IEC 62044 series cannot fully meet the measurement requirements for magnetic properties of magnetic powder cores. It is therefore useful to have a standard for suitable measuring methods for the magnetic properties of magnetic powder cores.

New test methods with pulse wave excitation and DC power method that account for the characteristics of magnetic power cores are introduced in this document, in addition to some modifications for the traditional test methods. Also, an air core inductor with single winding or dual windings is introduced in the document to verify or calibrate the accuracy of test methods for magnetic properties of magnetic powder cores, because of the linear properties of an air core inductor.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>IEC 63300:2023</u> https://standards.iteh.ai/catalog/standards/sist/900440be-80cc-433f-8196-b86f13720850/iec-63300-2023

TEST METHODS FOR ELECTRICAL AND MAGNETIC PROPERTIES OF MAGNETIC POWDER CORES

1 Scope

This document provides the test methods for the electrical and magnetic properties of magnetic powder cores used for inductive components in electronics equipment, switch-mode power supplies and power conversion equipment, and introduces measuring principles, scope of application and matters of importance for each method.

The parameters used to characterize the magnetic powder cores include: inductance factor, effective permeability, complex relative permeability, temperature coefficient of permeability, frequency coefficient of permeability, DC bias characteristic, power loss, and quality factor. This document is the basis for determining the characteristic parameters of magnetic powder cores.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 63182-2, Magnetic powder cores – Guidelines on dimensions and the limits of surface irregularities – Part 2: Ring-cores

EC 63300:2023

3 Terms, definitions, abbreviated terms and symbols 31-8196-b86f13720850/iec-

63300-2023

3.1 Terms and definitions

No terms and definitions are listed in this document.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at https://www.electropedia.org/
- ISO Online browsing platform: available at https://www.iso.org/obp

3.2 Abbreviated terms

- ARV average rectification value
- EPR equivalent parallel resistance
- ESR equivalent series resistance
- FFT fast Fourier transform
- MSE modified Steinmetz equation
- PWM pulse width modulation
- RMS root mean square
- SCR silicon controlled rectifier
- SRF self-resonant frequency
- ZVS zero voltage switching

3.3 Symbols

All the formulae in this document use basic SI units. When multiples or sub-multiples are used, the appropriate power of 10 shall be introduced.

f	is the frequency, in hertz (Hz);
T _S	is the cycle, in seconds (s);
B _m	is the peak value of effective magnetic flux density, in teslas (T);
H _m	is the peak value of effective magnetic field strength, in amperes per meter (A/m);
P _c	is the power loss absorbed by the core, in watts (W);
P _w	is the winding loss, in watts (W);
P _{cv}	is the power density absorbed by the core, in watts per cubic meter (W/m 3);
A_{e}	is the effective cross-sectional area of the core, in square meters (m^2) ;
le	is the effective magnetic path length of the core, in meters (m);
Ve	is the effective volume of the core, in cubic meters (m^3) ;
φ	is the phase, in radians (rad);
$\Delta \varphi$	is the phase shift absolute error, in radians (rad);
N2	is the number of turns of the voltage sensing winding;
ΔT	is the temperature rise, in degrees Celsius (°C);
N ₁	is the number of turns of the exciting winding;
μ_0	is the magnetic constant (the permeability of vacuum), approximately $4 \times \pi \times 10^{-7}$ H/m; <u>IEC 63300:2023</u>
μ_{ea} https://sta	is the effective amplitude permeability; 40be-80cc-433f-8196-b86f13720850/iec-

 $\mu_{e\Delta}$ is the effective incremental permeability.

4 Instruments and equipment

4.1 General provisions

A suitable circuit (as specified in Annex A to Annex F and Annex H) and instruments shall be chosen for measuring.

4.2 Excitation source

4.2.1 General provisions

The properties of magnetic powder cores provided by manufacturers are generally based on a sinusoidal wave excitation source, because that is the most repeatable and easily replicated measurement. Applications include many diverse non-sinusoidal conditions, and therefore methods for testing with other waveshapes are necessary for specific cases. Sine wave basic data is most useful as a common point of reference for characterizing materials, comparing materials, correlating testing between labs, and setting clear specification limits. Excitation sources in this document include sinusoidal wave and square wave sources. Note that the waveform of a voltage source (setting the magnetic flux density) does not necessarily match the waveform of the associated current (since the magnetic field strength follows in accordance with the inductive properties of the device under test). Likewise, the waveform of a current source (setting the magnetic field strength) does not necessarily match the waveform of the associated flux density). The excitation source shall have low internal impedance, with frequency and amplitude stable to within $\pm 0,1$ % during measurement.

- 10 -

4.2.2 Sinusoidal wave excitation source

When sinusoidal wave excitation is specified, the total harmonic content of the excitation source shall be less than 1 %. When the excitation voltage is sinusoidal, the magnetic flux density is calculated as in Formula (1).

$$B_{\rm m} = \frac{\sqrt{2} \times U_{\rm 1rms}}{2 \times \pi \times f \times A_e \times N_{\rm 1}} \tag{1}$$

where

 $U_{1 \text{rms}}$ is the root mean square (RMS) of the excitation voltage, in volts (V).

4.2.3 Square wave excitation source

When square wave (the pulse width modulation (PWM) waveform with 0,5 duty cycle) excitation is specified, as shown in Figure 1 (the negative half wave is the same as the positive half wave in shape), the overshoot U_{10} shall be less than 5 % of the peak pulse amplitude U_{1m} , the droop U_{1D} shall be less than 2 % of the peak pulse amplitude U_{1m} , and the pulse rise time t_r and pulse fall time t_f shall be less than 1 % of the cycle of the square wave.

NOTE Clause I.2 describes the rationale of "less than 1 %".

When the excitation voltage is square, the magnetic flux density is calculated as in Formula (2).

$$B_{\rm m} = \frac{U_{\rm 1m}}{4 \times f \times A_e \times N_{\rm 1}}$$

(2)

https://standards.iteh.ai/catalog/standards/sist/900440be-80cc-433f-8196-b86f13720850/iec-63300-2023

Key

 U_{1m} peak pulse amplitude is the maximum value of an extrapolated smooth curve through the top of the pulse, excluding any initial "spike" or "overshoot", the duration of which is less than 10 % of the pulse duration, in volt (V) (see IEC 61007:2020, 3.3)

t_r pulse rise time

t_f pulse fall time

U_{1D} droop

U₁₀ overshoot

Figure 1 – Figure of square waveform

4.2.4 Calculation of magnetic flux density

In general, the magnetic flux density with an arbitrary AC waveform exciting voltage can be calculated as in Formula (3).

$$B_{\rm m} = \frac{U_{\rm 1}}{4 \times f \times A_{\rm e} \times N_{\rm 1}} \tag{3}$$

where

 U_1 is the average rectification value (ARV) of the arbitrary AC waveform exciting voltage, in volts (V).

4.3 Measuring equipment

4.3.1 General provisions

Voltage meter or voltage-measuring equipment shall be of high internal impedance. In order to reduce measurement error, probes shall be of high input impedance. Additionally, the bandwidth of the voltage meter or voltage-measuring equipment shall cover the frequency of harmonics whose amplitude is 1 % of the amplitude of the fundamental wave.

4.3.2 Voltmeter

In order to measure the RMS, average value and peak value of the excitation voltage accurately, a voltmeter with accuracy of 0.2 % is recommended.

4.3.3 Data acquisition unit

In order to measure the RMS, average value and peak value of the excitation voltage accurately, the sampling rate of the data acquisition unit shall be not less than 256 points per cycle, and the resolution shall be not less than 12 bits.

4.4 Sensor

4.4.1 Sampling resistor

The error of the resistance of the sampling resistor shall be less than 0,1 % (including the temperature drift of resistance). The parasitic inductance of the sampling resistor shall meet both Formula (4) and Formula (5).

$$L \le \frac{R}{2 \times \pi \times f} \sqrt{2 \times \delta_{a}}$$
(4)

$$L \le \frac{R \times \tan(\delta_{\varphi})}{2 \times \pi \times f} \tag{5}$$

where

- *L* is the parasitic inductance of the sampling resistor, in henrys (H);
- *R* is the resistance of the sampling resistor, in ohms (Ω);
- δ_a is the allowable relative error of the voltage drop across the sampling resistor at the test frequency (no unit);
- δ_{φ} is the phase difference of voltage and current on the sampling resistor at the test frequency, in radians (rad).

EXAMPLE

For $\delta_a = 0.1$ %, $\delta_a = 4.363 \times 10^{-4}$ rad = 0.025°, $R = 1 \Omega$, f = 500 kHz, then:

$$L \le \frac{1}{2 \times \pi \times 500 \times 10^3} \sqrt{2 \times 0.001} = 14,2 \text{ nH}$$
 (6)

$$L \le \frac{1 \times \tan(0,025^{\circ})}{2 \times \pi \times 500 \times 10^{3}} = 0,139 \text{ nH}$$
(7)

So the parasitic inductance of the sampling resistor at 500 kHz meets $L \leq 0,139$ nH.

4.4.2 Current transformer

The amplitude error (ratio error) of a current transformer shall be less than 5 %. The phase shift (phase error) shall be less than 0,000 436 rad or 0,025°.

NOTE Clause I.3 describes the rationale of "less than 5 %".