International Standard

Asbestos-cement pipes and joints for thrust-boring and pipe jacking

Tuyaux et joints en amiante-ciment pour fonçage

First edition - 1979-10-15 Γ eh STANDARD PREVIIEW (standards.iteh.ai)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO member bodies). The work of developing International Standards is carried out through ISO technical committees. Every member body interested in a subject for which a technical committee has been set up has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council.

International Standard ISO 4488 was ¿̀eveloped by Technical Committee ISO/TCZ7, VINW Products in fibre reinforced cement, and was circulated to the member bodies in September 1977.

It has been approved by the member bodies of the following countries : :079
https://standards.iteh.ai/catalog/standards/sist/ebc1522f-7223-43df-b53b-

Australia	India	c1d2ceSSpain/iso-4488-1979
Austria	Iran	Sweden
Brazil	Ireland	Switzerland
Bulgaria	Italy	Turkey
Chile	Korea, Rep. of	United Kingdom
Colombia	Netherlands	USSR
Czechoslovakia	New Zealand	Venezuela
Egypt, Arab Rep. of	Portugal	Yugoslavia
Germany, F.R.	Romania	
Greece	South Africa, Rep. of	

The member bodies of the following countries expressed disapproval of the document on technical grounds :

Belgium
France
Mexico

Contents Page
1 Scope and field of application 1
2 References 1
3 Pipes 1
3.1 Composition 1
3.2 Classification 1
 2
3.4 Characteristics 2
(staindaldeds.itèi...... 3.4) 5
3.6 Marking 88:1979 8
https://standards.iteh.ai/catalog standards/sistebc1522f-7223-43df-b53b- 4 cJoints 5.94fa/iso-4488-197. 8
4.1 Materials 8
4.2 Characteristics 8
4.3 Marking 8
5 Inspection and acceptance 8
5.1 Inspection of each item of the consignment 8
5.2 Inspection by sampling 8
5.3 Certification 8
5.4 Special applications 8
Annexes
A Acceptance tests 9
B Calculation of the class 10

iTeh STANDARD PREVIEW (This page ineenitionaitylyet biank

ISO 4488:1979
https://standards.iteh.ai/catalog/standards/sist/ebc1522f-7223-43df-b53b-cld2ce5594fa/iso-4488-1979

Asbestos-cement pipes and joints for thrust-boring and pipe jacking

1 Scope and field of application

This International Standard gives specifications relating to asbestos-cement pipes and joints for thrust-boring and pipe jacking ${ }^{1 /}$ for applications such as
a) ducts to protect other pipes or cables;
b) sewerage and drainage at atmospheric pressure. ${ }^{2)}$

It defines certain conditions of manufacture, classification, characteristics and acceptance tests for these products.
binder, ${ }^{4)}$ asbestos fibre and water, excluding any materials liable to cause ultimate deterioration in the quality of the pipes. ${ }^{5}$

3.2 Classification

3.2.1 Classes

The pipes are classified in two classes, as indicated in table 1 , according to their permissible thrusting load. ${ }^{6)}$

Table 1 - Classification

Building and sanitary pipes in asbestos-cemént are covēred by B . 1
ISO 391^{33}).
Asbestos-cement pipe fittings for building and sanitary purposes are covered by ISO 3923).
Asbestos-cement pipes, joints and fittings for sewerage and ofrainage are covered by ISO 881^{31}

2 References

ISO 390, Asbestos-cement products - Sampling and inspection.

ISO 2785, Guide to the selection of asbestos-cement pipes subject to external load with or without internal pressure.

3 Pipes

3.1 Composition

The pipes shall be made from a close and homogeneous mixture essentially consisting of a suitable inorganic hydraulic

Nominal diameter mm	Thrusting load	
	Class 1 kN	Class 2 kN
/ebc1522f-1503-43df-bs 8-1979 200 250 300 350 400 450 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000	3b-300 400 500 600 700 800 900 1000 1200 1400 1550 1700 1900 2400 3000 3700 4400 5200 6200 7300 8500 9800 11500	$\begin{array}{r} 2150 \\ 2500 \\ 2800 \\ 3150 \\ 3500 \\ 3850 \\ 4200 \\ 4900 \\ 5700 \\ 6600 \\ 7700 \\ 8900 \\ 10300 \\ 11800 \\ 13500 \end{array}$

[^0]This International Standard deals also with pipes having nominal diameters or permissible thrusting loads other than those shown in table 1. The permissible thrusting load of pipes with nominal diameters above 2000 mm should be agreed between the manufacturer and the purchaser.

3.2.2 Choice of the class

The ratio of the load required to reach the longitudinal crushing strength (see 3.4.3.1) to the permissible thrusting load (see table 1) shall not be less than 1,7 .

The purchaser's engineer, who is qualified to judge the conditions of installation and operation of the pipes, shall decide the class of pipe to be used. Where the required thrusting load as calculated is intended to be used in conjunction with the minimum factor of safety of 1,7 , the calculations shall take fully into account all special aspects of the individual application, such as

- effect of lubrication;
- vertical and longitudinal forces on the pipes;
- possibility of deviation of the pipeline during installation;
- experience of the installer and his operatives.
(stand arro The design thicknesses shall be specified by the manufacturer taking into consideration all the requirements provided for in

3.3 General appearance and finish

 this International Standard.Table 2 - Nominal diameters

150	(1300)
200	1400
250	1500
300	1600
350	(1700)
400	1800
450	(1900)
500	2000
600	(2100)
700	2200
800	(2300)
900	2400
1000	2500
(1100)	
1200	

NOTE - National standards may continue to provide for nominal diameters from the following range of approximately corresponding metric/inch sizes :

$100 / 4 \mathrm{in}$,	$125 / 5 \mathrm{in}$,	$150 / 6 \mathrm{in}$,	$175 / 7 \mathrm{in}$,
$200 / 8 \mathrm{in}$,	$225 / 9 \mathrm{in}$,	$250 / 10 \mathrm{in}$,	$300 / 12 \mathrm{in}$,
$350 / 14 \mathrm{in}$,	$375 / 15 \mathrm{in}$,	$400 / 16 \mathrm{in}$,	$450 / 18 \mathrm{in}$,
$500 / 20 \mathrm{in}$,	$525 / 21 \mathrm{in}$,	$600 / 24 \mathrm{in}$,	$675 / 27 \mathrm{in}$,
$700 / 28 \mathrm{in}$,	$750 / 30 \mathrm{in}$,	$800 / 32 \mathrm{in}$,	$825 / 33 \mathrm{in}$,
$900 / 36 \mathrm{in}$,	$975 / 39 \mathrm{in}$,	$1000 / 40 \mathrm{in}$,	$1050 / 42 \mathrm{in}$.

The internal surface shall be regular and smooth. If necessary (see 5.4), the pipes may be coated internally and / or externally with a suitable coating.

The part of the pipe where the rubber jointing rings are located shall satisfy the tolerances on the external diameter, as defined in 3.4.1.5 a), for a length appropriate to the type of joint adopted, and shall be free from irregularities which could affect the efficiency of the seal.

The shape of the finished ends shall be fixed by the manufacturer to suit the type of joint used. The end planes of the pipes shall be parallel to each other and perpendicular to the axis.

3.4 Characteristics

3.4.1 Geometrical characteristics

3.4.1.1 Nominal diameter

The nominal diameter of the pipes correspond to the internal diameter expressed in millimetres, tolerances excluded.

The series of nominal diameters is given in table 2. Nominal diameters not shown within parentheses are preferable.

3.4.1.2 Thickness of pipe wall

There are two design thicknesses (see figure 1) : e at the pipe end where the thrust is transmitted, and e^{\prime} at the barrel of the pipe. The nominal thickness of the pipe is the thickness e of the portion where the thrust is transmitted.

488:1979
3.4.1.3 External diameter
nal diameter

The external diameter D_{e} refers to the external diameter on the barrel of the pipe (see figure 1). The external diameter shall conform to those in the manufacturer's catalogues.

3.4.1.4 Length

The nominal length l of the pipes refers to the length measured between the extremities for pipes with plain ends and to the useful length for socketed pipes (see figure 1). It should normally be not less than 2 m .

3.4.1.5 Tolerances

a) External diameter of finished ends

The tolerances on the external diameter of the finished ends where jointing rings are located (plain ends), as well as a suitable method of measuring, shall be established by the manufacturer according to the type of joint used and taking into account the tolerances acceptable in respect of jointing rings. Tolerances shall be notified to the purchaser if required.
b) Regularity of the internal diameter (Roundness - Optional test)

If required, the regularity of the internal diameter of pipes < 500 mm shall be checked by means of a sphere or a disc, of a material unaffected by water, passing freely in the pipe.

Figure 1 - Types of pipe

The disc shall be kept perpendicular to the axis of the pipe. The diameter of the sphere or the disc shall be less than the nominal diameter of the pipe by the following value, expressed in millimetres (rounded to the nearest millimetre) :

$$
2,5+0,01 d
$$

d being the nominal diameter, expressed in millimetres.
If required, the regularity of the internal diameter of pipes $>500 \mathrm{~mm}$ shall be checked by measuring three diameters at an angle of about 60° between them, at two different crosssections of the pipe, with an accuracy of $\pm 1 \mathrm{~mm}$. None of the six measurements shall be smaller than that allowed by application of the above formula.
c) Wall thickness (see figure 1)

Lower deviations for thicknesses e and e^{\prime} :

- up to 10 mm :
$-1,5 \mathrm{~mm}$
- over 10 mm up to 20 mm : - $2,0 \mathrm{~mm}$
- over 20 mm up to 30 mm : $-2,5 \mathrm{~mm}$
- over 30 mm up to 60 mm : $-3,0 \mathrm{~mm}$ STANDA The maximum deviations, f according to the method in figure 2 a) and measured on the external surface at mid-span,
- over 60 mm up to 90 mm : $-3,5 \mathrm{~mm}$
- over 90 mm :
$-4,0 \mathrm{~mm}$
pipe shall not be greater than the following value, expressed in millimetres (rounded to the nearest millimetre) :

$$
\begin{aligned}
& +(6+0,011 d) \\
& -0
\end{aligned}
$$

d being the nominal diameter, expressed in millimetres.
e) Nominal length
$+5$
$-20 \mathrm{~mm}$
f) Straightness (Optional test)

The straightness may be checked by either of the following two methods, to be chosen by the manufacturer :

- by rolling the pipe on two parallel runners placed at a distance apart equal to two-thirds of the nominal length $/$ of the pipe [see figure 2 a], or
- by rolling the pipe on an even, flat floor [see figure 2 b)].

NOTE - Upper deviations are free. https://standards.iteh.ai/catalog/standجords/ant diameters. 7223 -43df-b53b- $\quad f$
c1 d2ce5594fa/iso-4488-1979
d) External diameter of the barrel of the pipe

The tolerances on the external diameter on the barrel of the
l being the length of the pipe, in metres.

Figure 2 - Measurement of straightness

3.4.2 Physical characteristics

Tested as prescribed in 3.5 .3 (optional test), the pipes shall show no fissure, leakage or sweating.

3.4.3 Mechanical characteristics

3.4.3.1 Longitudinal crushing test

Tested as prescribed in 3.5.1 (compulsory test), the pipes shall have a minimum unit longitudinal crushing strength of $50 \mathrm{~N} / \mathrm{mm}^{2}$.

3.4.3.2 Transverse crushing test

Tested as prescribed in 3.5 .2 (compulsory test), the pipes shall have a minimum unit transverse crushing strength of $33 \mathrm{~N} / \mathrm{mm}^{2}$.

NOTES

1 Mechanical characteristics may be expressed in ultimate loads; however, the unit strengths determined by the tests prescribed in 3.5.1 and 3.5.2 shall not be less than those indicated in 3.4.3.1 and 3.4.3.2 respectively.
2) Transverse crushing test (method as specified in 3.5.2).
b) Optional tests at purchaser's request, only when the pipes are being used as sewerage pipes

1) Hydraulic pressure test (method as specified in 3.5.3).
2) Chemical resistance test (method as specified in 3.5.4).

3.5.1 Longitudinal crushing test

The test shall be carried out on three samples, cut from one pipe, with dimensions $2 e \times 2 e \times e$,
e being the wall thickness, in millimetres, according to 3.4.1.2 (see figures 1 and 3), after immersion for 48 h in water at a temperature of $20^{\circ} \mathrm{C}$.

When tests are specified on non-immersed samples, the test samples shall be conditioned for 7 days in a room at a temperature of $20 \pm 2^{\circ} \mathrm{C}$ and a relative humidity of $\left.\left.)^{(65}+5\right) \% \cdot V\right] \mathrm{W}$
The samples shall be sawn at three equidistant points of the
2 Tests on non-immersed specim
the following values shall apply:

- minimum unit longitudinal crushing strength: $60 \mathrm{~N} / \mathrm{mm}^{2} \mathrm{I}^{\circ} \mathrm{d}$
- minimum unit transverse crushing strength : $36 \mathrm{~N} / \mathrm{mm}^{2}$.

ISO 4488:1

3.4.4 Chemical characteristicstandards.iteh.ai/catalog/standards/s

cld2ce5594fa/iso-44
Tested as prescribed in 3.5 .4 (optional test), the pipes shall not show a neutralization of acetic acid exceeding $0,100 \mathrm{~g}$ per square centimetre.

3.5 Tests

The acceptance tests shall be carried out at the manufacturer's works on pipes, coated or otherwise, sufficiently matured.
a) Compulsory tests

1) Longitudinal crushing test (method as specified in 3.5.1).
pipe ends. If there is a groove in the finished ends, the sample shall be sawn in such a way that the groove is in the sample. The end planes shall be ground parallel to each other and perpendicular to the axis. This should be done with a stationary diamond grinding machine with a top grinding disc and a turning arm to bring the sample into the machine. Other equivalent methods may be used.

The extent to which the press plates of the test apparatus and the ground planes of the samples deviate from a flat plane, shall be kept to the absolute practical minimum.

The test samples shall be placed directly between the press plates, no felt or wood being used between the test piece and the press plates. The test piece shall be placed in the test apparatus with its centre of gravity in the line of the applied force (i.e. no eccentricity). Because of the round form of the test pieces, the exact location of the centre of gravity should be determined in advance, after which centring of the test pieces

Figure 3 - Longitudinal crushing test sample

[^0]: 1) Throughout this document, the terms "thrusting" and "jacking" are to be taken as synonymous.
 2) Accidental overpressures are admitted provided that a sufficient safety factor be maintained in relation to the hydraulic test pressure provided for in 3.5.3.
 3) In preparation. (Revisions of ISO/R 160, ISO/R 391, ISO/R 392 and ISO/R 881.)
 4) National standards may specify the binder to be used
 5) This International Standard applies both to water cured pipes and to autoclaved pipes in which the binder is partially replaced by ground silica.
 6) See annex B.
