

Edition 1.0 2022-12

INTERNATIONAL STANDARD

Semiconductor devices – Flexible and stretchable semiconductor devices – Part 9: Performance testing methods of one transistor and one resistor (1T1R) resistive memory cells

<u>EC 62951-9:2022</u>

https://standards.iteh.ai/catalog/standards/sist/84b226bb-d683-4850-a5f0-4910e65d9390/iec-62951-9-2022

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2022 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Secretariat 3, rue de Varembé CH-1211 Geneva 20 Switzerland

Tel.: +41 22 919 02 11 info@iec.ch www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

IEC Products & Services Portal - products.iec.ch

Discover our powerful search engine and read freely all the publications previews. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 300 terminological entries in English and French, with equivalent terms in 19 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

Edition 1.0 2022-12

INTERNATIONAL STANDARD

Semiconductor devices – Flexible and stretchable semiconductor devices – Part 9: Performance testing methods of one transistor and one resistor (1T1R) resistive memory cells

<u>EC 62951-9:2022</u>

https://standards.iteh.ai/catalog/standards/sist/84b226bb-d683-4850-a5f0-4910e65d9390/iec-62951-9-2022

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 31.080.99

ISBN 978-2-8322-6222-1

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FOF	REWO)RD	3
1	Scop	e	5
2	Norm	native references	5
3	Term	ns and definitions	5
4	Devid	ce under testing (DUT)	7
5	Test	method	8
5	i.1	General	8
5	5.2	Test equipment and tools	
	5.2.1	General	8
	5.2.2	Read	9
	5.2.3	B Forming	10
	5.2.4	SET programming	11
	5.2.5	6 RESET programming	12
	5.2.6	6 Endurance	14
	5.2.7	Retention	16
5	5.3	Test report	
Bibl	iograp	ɔhy	

Figure 1 – 1T1R resistive memory cell	8
Figure 2 – Block diagram of the measurement setup of 1T1R resistive memory cells	9
Figure 3 – Read operation of 1T1R resistive memory cell	9
Figure 4 – Cumulative probability distribution of HRS and LRS of 1T1R resistive memory cells	10
Figure 5 – Forming operation of 1T1R resistive memory cell	11
Figure 6 – Simulation test flow chart of the forming process	11
Figure 7 – SET operation of 1T1R resistive memory cell	12
Figure 8 – Simulation test flow chart of the SET operation of 1T1R resistive memory cell	12
Figure 9 – RESET operation of 1T1R resistive memory cell	13
Figure 10 – Simulation test flow chart of the RESET operation of 1T1R resistive memory cell	13
Figure 11 – Cumulative resistance distribution of 1T1R resistive memory	14
Figure 12 – Simulation test flow chart of the endurance test of 1T1R resistive memory cell	15
Figure 13 – Exemplary endurance data of a 1T1R resistive memory cell	15
Figure 14 – Simulation test flow chart of retention property of 1T1R resistive memory cells	16
Figure 15 – Exemplary retention characteristics of 1T1R resistive memory cells	16

INTERNATIONAL ELECTROTECHNICAL COMMISSION

SEMICONDUCTOR DEVICES – FLEXIBLE AND STRETCHABLE SEMICONDUCTOR DEVICES –

Part 9: Performance testing methods of one transistor and one resistor (1T1R) resistive memory cells

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 62951-9 has been prepared by IEC technical committee 47: Semiconductor devices. It is an International Standard.

The text of this International Standard is based on the following documents:

Draft	Report on voting
47/2781/FDIS	47/2791/RVD

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/standardsdev/publications.

A list of all parts in the IEC 62951 series, published under the general title *Semiconductor devices* – *Flexible and stretchable semiconductor devices*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The "colour inside" logo on the cover page of this document indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

(standards.iteh.ai)

IEC 62951-9:2022

https://standards.iteh.ai/catalog/standards/sist/84b226bb-d683-4850-a5f0-4910e65d9390/iec-62951-9-2022

SEMICONDUCTOR DEVICES – FLEXIBLE AND STRETCHABLE SEMICONDUCTOR DEVICES –

Part 9: Performance testing methods of one transistor and one resistor (1T1R) resistive memory cells

1 Scope

This part of IEC 62951 specifies the test methods for evaluating the performance of unipolartype one transistor one resistor (1T1R) resistive memory cells. The performance test methods in this document include read, forming, SET, RESET, endurance and retention. This document is applicable to flexible devices as well as rigid resistive memory devices without any limitations prone to device technology and size.

2 Normative references

There are no normative references in this document.

3 Terms and definitions TANDARD PREVIEW

For the purpose of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- https://standards.iteh.ai/catalog/standards/sist/84b226bb-d683-4850-a5f0-4910e65d9390/iec-
- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

3.1

programming transistor

semiconductor device used to amplify, limit or switch electronic signals and electrical power

3.2

source voltage

 V_{S}

bias applied to the source terminal of the programming transistor

3.3

gate voltage

 V_{G}

bias applied to the gate terminal of the programming transistor

3.4

drain voltage

 V_{D}

bias applied to the drain terminal of the programming transistor

3.5

resistive memory

two terminal device, based on reversible formation and rupture of filament within active layer, defining low and high resistance states, respectively

3.6

forming voltage

*V*_{Form}

high voltage applied across the active layer to induce defects within the active layer to for a filament or conduction path initially

3.7

resistance of low resistance state

R_{LRS} resistance of memory device in SET state

3.8

resistance of high resistance state

R_{HRS}

resistance of memory device in RESET state

3.9

trip point resistance

 R_{TRP} intermediate reference resistance between R_{HRS} and R_{LRS}

$R_{\rm HRS} > R_{\rm TRP} > R_{\rm LRS}$

3.10 step voltage

VStep ramp of voltage intervals applied to resistive memory

3.11tps://standards.iteh.ai/catalog/standards/sist/84b226bb-d683-4850-a5f0-4910e65d9390/iecread voltage

 V_{Read}

specific voltage for measuring the resistance of resistive memory, R_{R}

3.12 read current

I_{Read}

specific current value at V_{Read} for measuring the resistance of resistive memory, R_{R}

3.13

resistance of resistive memory

R_{R}

resistance value at V_{Read} , defined by the following formula

$$R_{\mathsf{R}} = \frac{V_{\mathsf{Read}}}{I_{\mathsf{Read}}}$$

3.14 SET voltage VSFT voltage required to switch resistive memory to R_{LRS} after forming process

3.15

RESET voltage

 V_{RESET} voltage required to switch resistive memory to R_{HRS}

3.16

SET time

 t_{SET} time required to switch resistive memory to R_{LRS}

3.17 RESET time

 t_{RESET} time required to switch resistive memory to R_{HRS}

3.18

programming transistor on voltage

 $V_{\rm ON}$ voltage required to turn on programming transistor

3.19

delay time

 t_{Delay} required time between V_{R} and V_{G} for stable operation

3.20

pulse width

IEC 62951-9:2022

elapsed time between the rising and falling edges of a single pulse a510-4910e65d9390/iec-

62951-9-2022

4 Device under testing (DUT)

Figure 1 a) shows the equivalent circuit of 1T1R resistive memory cell. The top electrode of the resistive memory, the source, gate and drain of the transistor are defined as terminal $V_{\rm R}$, $V_{\rm S}$, $V_{\rm G}$ and $V_{\rm D}$, respectively. Figure 1 b) shows the schematic diagram of 1T1R resistive memory cell. The resistive memory is integrated on the drain-side of the transistor. Different voltage biases are applied to each terminal during forming, SET and RESET operations.

- 8 -

Figure 1 – 1T1R resistive memory cell

Resistive memory is composed of an insulating oxide material sandwiched between two metal electrodes. The bottom electrode (BE) of the cell is connected to the drain of transistor. The V_R is applied on the top electrode of the 1T1R resistive memory cell with V_S grounded. The transistor limits the current during the forming and SET operations by the gate voltage, V_G .

(standards.iteh.ai)

5 Test method

5.1 General

IEC 62951-9:2022

https://standards.iteh.ai/catalog/standards/sist/84b226bb-d683-4850-a5t0-4910e65d9390/iec-Test procedures for 1T1R resistive memory cells are performed as shown in Figure 2. First,

1T1R resistive memory cell (DUT) is mounted on a test fixture, and its electrical characteristics are measured by varying voltage, current and temperature. For measuring and characterizing these devices accurately, ultra-high accuracy sensors shall be employed.

5.2 Test equipment and tools

5.2.1 General

A variety of experimental approaches have been employed to test 1T1R resistive memory cells. Semiconductor parameter analyzer is a test instrument that integrates multiple measurement and analysis capabilities to perform the current-voltage (I-V) and capacitance measurements (C-V (capacitance-voltage), C-f (capacitance-frequency), and C-t (capacitance-time)) of 1T1R resistive memory cells. The semiconductor parametric test is a fundamental measurement to determine the characteristics of a semiconductor device and its manufacturing process.

The key measurement component of the parameter analyzer is a source measure unit (SMU). The SMU is a measurement module that combines the capabilities of a voltage/current source and a voltage/current meter into a single module. Because the source and measurement circuitry are closely integrated, one can achieve far better accuracy and higher resolution with less measurement error than using various independent instruments to make the same measurement. To perform ultra-fast (transient) I-V measurements, the pulse generator unit (PGU) provides ultra-fast voltage waveform generation and signal observation on different channels of integrated sourcing and measurement. Hot chuck is also an important tool to be used together with a prober for evaluating temperature characteristics of 1T1R resistive memory cells.

Figure 2 – Block diagram of the measurement setup of 1T1R resistive memory cells

5.2.2 Read

Figure 3 a) corresponds to the circuit diagram and Figure 3 b) corresponds to the voltage-time graph to exhibit the read operation of 1T1R resistive memory cell. The current value, I_{Read} , is measured to calculate the resistance of resistive memory, R_{R} , when V_{Read} with pulse width t_{Read} is applied across the resistive memory.

Figure 4 shows the exemplary cumulative probability distribution of HRS and LRS of 1T1R resistive memory cells with intermediate resistance trip point resistance, R_{TRP} . To be considered as an application for the field case, $R_{\text{HRS}}/R_{\text{LRS}}$ in Figure 4 should be equal to or greater than 2.

Figure 3 – Read operation of 1T1R resistive memory cell