This document is not an ASTM standard and is intended only to provide the user of an ASTM standard an indication of what changes have been made to the previous version. Because it may not be technically possible to adequately depict all changes accurately, ASTM recommends that users consult prior editions as appropriate. In all cases only the current version of the standard as published by ASTM is to be considered the official document.



## Designation: D2132 - 12 (Reapproved 2018) D2132 - 19

# Standard Test Method for Dust-and-Fog Tracking and Erosion Resistance of Electrical Insulating Materials<sup>1</sup>

This standard is issued under the fixed designation D2132; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon ( $\varepsilon$ ) indicates an editorial change since the last revision or reapproval.

#### 1. Scope-Scope\*

1.1 This test method is intended to differentiate solid electrical insulating materials with respect to their resistance to the action of electric arcs produced by conduction through surface films of a specified contaminant containing moisture. Test Methods D2302 and D2303 are also useful to evaluate materials.

1.2 <u>Units</u>—The values stated in inch-pound<u>SI</u> units are the standard, except in cases where <u>SI</u> units are more appropriate. The values <u>standard</u>. The inch-pound <u>units</u> in parentheses are for information only. <u>Specific precautionary statements are given in The values stated in each system are not necessarily 12.4.exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.</u>

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

NOTE 1-There is no equivalent ISO standard.

1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

#### 2. Referenced Documents

2.1 ASTM Standards:<sup>2</sup>

D709 Specification for Laminated Thermosetting Materials

D1711 Terminology Relating to Electrical Insulation

D2302 Method of Test for Differential Wet Tracking Resistance of Electrical Insulating Materials with Controlled Water-to-Metal Discharges (Withdrawn 1982)<sup>3</sup>

D2303 Test Methods for Liquid-Contaminant, Inclined-Plane Tracking and Erosion of Insulating Materials

### 3. Terminology

3.1 Definitions:

3.1.1 For definitions pertinent to this test method see Terminology D1711.

#### 4. High Voltage Hazard

4.1 Lethal voltages are a potential hazard during the performance of this test. It is essential that the test apparatus, and all associated equipment electrically connected to it, be properly designed and installed for safe operation.

4.2 Solidly ground all electrically conductive parts which it is possible for a person to contact during the test.

4.3 Provide means for use at the completion of any test to ground any parts which were at high voltage during the test or have the potential for acquiring an induced charge during the test or retaining a charge even after disconnection of the voltage source.

#### \*A Summary of Changes section appears at the end of this standard

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States

<sup>&</sup>lt;sup>1</sup> This test method is under the jurisdiction of ASTM Committee D09 on Electrical and Electronic Insulating Materials and is the direct responsibility of Subcommittee D09.07 on Electrical Insulating Materials.

Current edition approved Nov. 1, 2018 Aug. 1, 2019. Published November 2018 August 2019. Originally approved in 1962. Last previous edition approved in  $\frac{20122018}{10.1520/D2132-18.10.1520/D2132-19}$ .

<sup>&</sup>lt;sup>2</sup> For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.

<sup>&</sup>lt;sup>3</sup> The last approved version of this historical standard is referenced on www.astm.org.



4.4 Thoroughly instruct all operators as to the correct procedures for performing tests safely.

4.5 When making high voltage tests, particularly in compressed gas or in oil, it is possible for the energy released at breakdown to be sufficient to result in fire, explosion, or rupture of the test chamber. Design test equipment, test chambers, and test specimens so as to minimize the possibility of such occurrences and to eliminate the possibility of personal injury.

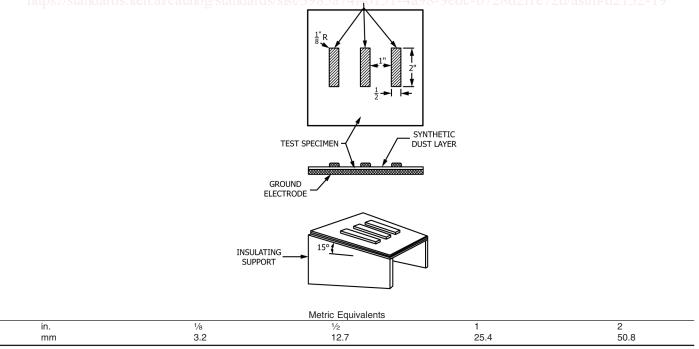
NOTE 2-If the potential for fire exists, have fire suppression equipment available.

#### 5. Summary of Test Method

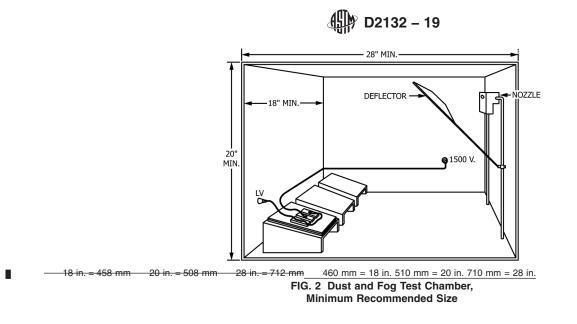
5.1 With electrodes mounted as shown in Fig. 1, coat test specimens with a synthetic dust and test in a chamber shown in Fig. 2. Direct a water spray at the test specimen. After the surface has been wetted, apply a 60-Hz voltage between the electrodes. Arcing occurs across localized high-resistance areas produced by nonuniform evaporation of the water from the contaminant. These arcs produce high temperatures in the underlying insulation with resultant carbonization of most organic materials. The carbonization concentrates the electric field. It is possible further carbonization will occur in the direction of the field. In such cases, a carbon track is formed which spans the distance between the electrodes and causes failure. It is possible that materials that do not track will erode under the action of the arcing. Such erosion usually progresses from an upper electrode through the thickness of the specimen towards the underlying electrode.

5.2 Rate materials that track in terms of the time required to form a track between the electrodes.

- 5.3 Rate materials that do not track in terms of the time required to erode to failure.
- 5.4 Failure will be indicated when the current increases sufficiently to actuate an overcurrent device.


NOTE 3—The conditions of this test favor the formation of a track for several possible reasons. Most important, the continuous renewal of the conducting properties of the contaminant by the water spray allows a track to grow progressively over long periods of time.

#### 6. Significance and Use


6.1 *Method*—It is possible that electrical insulation in service will fail as a result of tracking, erosion, or a combination of both, if exposed to high relative humidity and contamination environments. This is particularly true of organic insulations in outdoor applications where the surface of the insulation becomes contaminated by deposits of moisture and dirt, for example, coal dust or salt spray. This test method is an accelerated test that simulates extremely severe outdoor contamination. It is believed that the most severe conditions likely to be encountered in outdoor service in the United States will be relatively mild compared to the conditions specified in this test method.

## STM D2132-19

https://standards.iteh.ai/catalog/standards/sist/398 UPPER ELECTRODES 4a98-9edc-b728d2fl e72d/astm-d2132-19



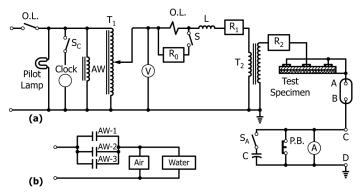
#### FIG. 1 Test Arrangement of Electrode System



6.2 *Test Results*—Materials can be classified by this test method as tracking-resistant, tracking-affected, or tracking-susceptible. The exact test values for these categories as they apply to specific uses will be specified in the appropriate material specifications, but guideline figures are suggested in Note 4. Tracking-resistant materials, unless erosion failure occurs first, have the potential to last many hundreds of hours (Note 5). Erosion, though it is possible that it will progress laterally, generally results in a failure perpendicular to the specimen surface. Therefore, compare only specimens of the same nominal thickness for resistance to tracking-induced erosion. Estimate the extent of erosion from measurements of the depth of penetration of the erosion. Place materials that are not tracking-susceptible in three broad categories—erosion-resistant, erosion-affected, and erosion-susceptible. When the standard thickness specimen is tested, the following times to failure typify the categories (Note 6):

| Erosion-susceptible | 5 to 50 h   |
|---------------------|-------------|
| Erosion-affected    | 50 to 200 h |
| Erosion-resistant   | over 200 h  |

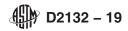
NOTE 4—Tracking-susceptible materials usually fail within 5 h. Tracking-affected materials usually fail before about 100 h.


NOTE 5—This information is derived from the individual experiences of eight laboratories using this test method since its publication as a suggested test method in June 1957, and from the results of an organized test program among these laboratories.

Note 6—In a normal distribution approximately 68 % of all test values are included within  $\pm 1$  standard deviation of the mean.

6.3 *Interpretation of Test Results*—This test method provides information that allows classification as described in 6.2. The comparison of materials within the same group is likely to be ambiguous unless three or more replicate specimens are tested. When the test method is used for specification purposes, do not establish simple minimum values without consideration of the large variance to be expected in test results. It is recommended that quality levels and specification minima be determined by statistical techniques.

#### 7. Apparatus


7.1 General—A schematic diagram of the power supply and control apparatus for testing one specimen is shown in Fig. 3(a).



(a) Power supply and control circuit of wet tracking tests.

(b) Air and water supply circuit.

FIG. 3 Circuit Diagrams



It is generally desirable to test three or more specimens simultaneously. It is recommended but not mandatory that a separate power supply and control be used for each test specimen. This allows "breaking-in" and recording of time to failure separately for each specimen.

7.2 *Circuit Breaker*—The circuit breaker (current relay, *OL*) interrupts the power supply on failure and stops the timing meter. Use it as an ON-OFF switch and as a device for interrupting air and water supply when all specimens fail. Fig. 3(b) illustrates the air and water supply circuit when three specimens are tested using one fog nozzle. The circuit breaker shall be rated at 2 to 3 A, inverse-time element type, for a 115-V supply. Use a resistance,  $R_0$ , to shunt the current coil during the break-in period so that the breaker will not actuate as a result of the bright-flash currents typical of this period. Adjust the resistance to produce an effective breaker action at approximately 6 A (115-V supply). Remove or switch out the shunt resistance after break-in.

7.3 Supply Transformer<sup>4</sup>—Use a supply transformer,  $T_2$ , capable of supplying 1500 V, 60 Hz, rms. A200-VA potential transformer is capable of supplying power for up to three specimens if desired. Use a transformer with a 20:1 ratio when used with a 115-V primary supply. Choose a transformer that offers an impedance between 600 and 1200  $\Omega$  resistance and 200 and 700  $\Omega$  reactance. Accomplish this by insertion of inductance L and resistance  $R_1$  in the low-voltage side and resistance  $R_2$  in the high-voltage side.

7.4 Control Transformer—Use a variable-ratio autotransformer,  $T_1$ , to adjust the voltage as required.

7.5 *Voltmeter*—Use a voltmeter, V, in the primary side to determine the specimen test voltage. Alternatively, use a high-impedance voltmeter for connection in the secondary, in which case take precautions to prevent electric shock to an operator. If a voltmeter is used in the primary, calibrate it against secondary voltage with a secondary load of 10 mA.

7.6 Monitoring Provisions—Use an ac ammeter, A, to monitor specimen current. Use a separate ammeter for each test specimen. Alternatively make provisions to connect an ammeter into each test-specimen circuit. Shunt the ammeter with a normally closed contact, PB, and a capacitance, C, to protect the ammeter from the large intermittent currents that occur during break-in. Connect the capacitance, if used, by a switch,  $S_A$ . After the break-in period, open the switch unless the values of the capacitance and ammeter impedances are such as to produce negligible error in current measurement. Use terminals A, B and C, D for oscilloscope monitoring, for current measurement with a voltmeter in combination with a resistor, or for insertion of an undercurrent relay to be used to stop the clock if the scintillation current falls below the specified value.

7.7 *Electrodes*—Use three copper or brass electrodes  $\frac{1}{2}$  by 2 by  $\frac{13 \times \frac{1}{8}$  in. (13 by 51 by 3.2 mm),  $51 \times 3.2$  mm (0.5 × 2 × 0.125 in.), with corners rounded to a  $\frac{1}{8}$ -in. (3.2-mm)  $\frac{3.2 \text{ mm}}{0.125 \text{ in.}}$  radius on the top surface of the specimen and spaced  $\frac{1}{10}$  in. (25 mm)  $\frac{25 \text{ mm}}{10}$  apart as shown in Fig. 1. Use a ground plate of copper or brass and of the same size as the test specimen on the bottom surface and mounted on an insulating support inclined 15 deg to the horizontal as shown in Fig. 1. Clamp the electrodes firmly to the test specimen. A suggested arrangement is shown in Fig. 4.

#### ASTM D2132-19

https://standards.iteh.ai/catalog/standards/sist/3985a74f-6151-4a98-9edc-b728d2fle72d/astm-d2132-19

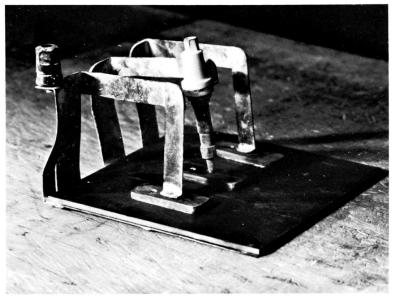



FIG. 4 Clamping Arrangement for Test-Specimen Electrodes

<sup>&</sup>lt;sup>4</sup> General Electric Type JE41, Model KAR-3, and Westinghouse Type VS, Style No. 687588, have been found satisfactory for this purpose.