

Designation: A878/A878M - 19

Standard Specification for Steel Wire, Modified Chromium Vanadium Valve Spring Quality¹

This standard is issued under the fixed designation A878/A878M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (\$\epsilon\$) indicates an editorial change since the last revision or reapproval.

1. Scope*

- 1.1 This specification covers the highest quality of round and shaped modified chromium vanadium alloy steel valve spring wire, uniform in quality and temper, intended for the manufacture of valve springs and other springs requiring high-fatigue properties when used at moderately elevated temperatures. It is similar to the grade VD (referenced in EN 10270-2) intended for high fatigue levels. This wire shall be either in the annealed and cold-drawn or quenched and tempered condition as specified by purchaser.
- 1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text, the inch-pound units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system shall be used independent of the other. Combining values from the two systems may result in non-conformance with the standard.
- 1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:²

A370 Test Methods and Definitions for Mechanical Testing of Steel Products

A700 Guide for Packaging, Marking, and Loading Methods for Steel Products for Shipment

A941 Terminology Relating to Steel, Stainless Steel, Related Alloys, and Ferroalloys

A751 Test Methods, Practices, and Terminology for Chemical Analysis of Steel Products

E8/E8M Test Methods for Tension Testing of Metallic Materials

E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications

E45 Test Methods for Determining the Inclusion Content of Steel

2.2 Federal Standard:³

Fed. Std. No. 123 Marking for Shipment (Civil Agencies)

2.3 European Standard:⁴

EN10270-2 Steel Wire for Mechanical Springs Part 2: Oil-Hardened and Tempered Spring Steel Wire of Unalloyed and Alloyed Steels

3. Terminology

- 3.1 Definitions of Terms Specific to This Standard:
- 3.1.1 *billet*, *n*—an as-cast or forged section, typically available for transport, inspection, and conditioning, that is used as raw material for wire rod manufacture.
- 3.1.2 *bloom*, *n*—an as-cast or forged section used as raw material for billet manufacture.
- 3.1.3 equivalent round diameter, n—diameter of a round wire having equivalent cross sectional area to a given shaped wire.
 - 3.1.4 round wire, n—wire having a circular cross section.
- 3.1.5 *shape factor*, *n* a value used to obtain cross sectional area for shaped wires when multiplied by measured width and measured thickness.
- 3.1.6 *shaped wire*, *n*—wire having a non-circular cross section.
- 3.2 Refer to Terminology A941 for additional definitions of terms used in this standard.

¹ This specification is under the jurisdiction of ASTM Committee A01 on Steel, Stainless Steel and Related Alloysand is the direct responsibility of Subcommittee A01.03 on Steel Rod and Wire.

Current edition approved Sept. 1, 2019. Published September 2019. Originally approved in 1987. Last previous edition approved in 2017 as A878/A878M-17. DOI: $10.1520/A0878_A0878M-19$.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

³ Available from Standardization Documents Order Desk, DODSSP, Bldg. 4, Section D, 700 Robbins Ave., Philadelphia, PA 19111-5094, https://quicksearch.dla.mil.

⁴ Available from European Committee for Standardization, CEN-CENELEC Management Centre, Avenue Marnix 17, B-1000 Brussels, Belgium.

4. Ordering Information

- 4.1 Orders for material under this specification shall include the following information for each ordered item:
 - 4.1.1 Quantity (mass),
- 4.1.2 Name of material (modified chromium vanadium alloy steel valve spring quality wire),
 - 4.1.3 Dimensions (Table 1 and Section 9),
 - 4.1.4 Condition (Section 7), and
 - 4.1.5 ASTM designation and year of issue.

Note 1—A typical ordering description is as follows: 20 000-kg quenched and tempered modified chromium vanadium alloy steel valve spring quality wire, size 6.00 mm in 150-kg coils to ASTM ____ dated ____, or for inch-pound, 40 000-lb quenched and tempered modified chromium vanadium alloy steel valve spring quality wire, size 0.250 in. in 350-lb coils to ASTM ____ dated ____.

- 4.2 The purchaser shall have the option to specify additional requirements, including but not limited to:
- 4.2.1 Requirements for certifications, heat analysis or test reports (Subsection 6.2 and Section 14),
- 4.2.2 Special packing, marking, and loading requirements (Section 15), and
 - 4.2.3 Other special requirements, if any.

5. Materials and Manufacture

- 5.1 The steel shall be made by a steel making process combined with secondary ladle refining that is capable of satisfying the inclusion content requirements of this specification.
- 5.2 The steel shall be continuously cast into blooms and rolled into billets.
- 5.3 Billet conditioning shall precede wire rod manufacture. The resulting wire rods shall be of sufficient surface quality that when combined with a surface removal operation performed prior to or during the wire manufacturing operation the resulting wire shall satisfy the surface condition and decarburization requirements of this specification.
- 5.4 The finished wire shall be free from detrimental pipe and undue segregation.
- 5.5 Alternate manufacturing processes may be used upon agreement between purchaser and supplier.

TABLE 1 Permissible Variations in Wire Diameter^A

	SI Units	
	Permissible	Permissible
Diameter, mm	Variations,	Out-of Round,
	±mm	mm
0.5 to 2.0, incl	0.02	0.02
Over 2.0 to 4.0, incl	0.03	0.03
Over 4.0 to 9.5, incl	0.04	0.04
	Inch-Pound Units	
	Permissible	Permissible
Diameter, in.	Variations,	Out-of Round,
	±in.	in.
0.020 to 0.075, incl	0.0008	0.0008
Over 0.075 to 0.148, incl	0.001	0.001
Over 0.148 to 0.375, incl	0.0015	0.0015

^A Permissible variation in wire diameter and out-of-round limits specified are absolute limits as defined in Practice E29.

6. Chemical Composition

- 6.1 The steel shall conform to the requirements for chemical composition specified in Table 2.
- 6.2 *Heat Analysis*—Each heat of steel shall be analyzed to determine the percentage of elements prescribed in Table 2. This analysis shall be made from a test specimen preferably taken during the pouring of the heat. When requested, this shall be reported to the purchaser and shall conform to the requirements of Table 2.
- 6.3 *Product Analysis*—An analysis may be made by the purchaser from finished wire representing each heat of steel. The average of all the separate determinations made shall be within the limits specified in the analysis column. Individual determinations may vary to the extent shown in the product analysis tolerance column, except that the several determinations of a single element in any one heat shall not vary both above and below the specified range.
- 6.4 For referee purposes, Test Methods, Practices, and Terminology A751 shall be used.

7. Mechanical Properties

- 7.1 Tension Test:
- 7.1.1 Requirements for Annealed and Cold-drawn Wires— Tension test requirements, if any, shall be stated on the purchase order.
- 7.1.2 Requirements for Quenched and Tempered Wires—The material as represented by tension test specimens shall conform to the requirements in Table 3. Variation in tensile strength within a coil shall not exceed 70 MPa [10.15 ksi].
- 7.1.3 *Number of Tests*—For quenched and tempered wires, each coil in a lot shall be tested. When specified for annealed and cold-drawn wires, one test specimen shall be taken for each five coils, or fraction thereof, in a lot. Each heat in a given lot shall be tested.
- 7.1.4 Location of Tests—For quenched and tempered wires, test specimens shall be taken from both ends of the coil. For annealed and cold-drawn wires, test specimens shall be taken from either end of the coil.
- 7.1.5 Test Method—The tension test shall be made in accordance with Test Methods and Definitions A370. Any tensile test specimen breaking in the tensile grips shall be discarded and a new specimen tested if the specified mechanical properties are not achieved. For shaped wires, cross sectional area shall be calculated either using the procedure in Test Methods E8/E8M for uniform but nonsymmetrical cross-sections, or measuring width and thickness and multiplying by a shape factor. Reduction of area for shaped wires shall be

TABLE 2 Chemical Requirements

	Analysis, %	Product Analysis Tolerance, %
Carbon	0.60-0.75	±0.02
Manganese	0.50-0.90	±0.03
Phosphorus	0.025 max	+0.005
Sulfur	0.025 max	+0.005
Silicon	0.15-0.30	±0.02
Chromium	0.35-0.60	±0.05
Vanadium	0.10-0.25	±0.01