

IEC TR 63307

Edition 1.0 2020-11

TECHNICAL REPORT

Measurement methods of the complex relative permeability and permittivity of noise suppression sheet (standards.iteh.ai)

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2020 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland Tel.: +41 22 919 02 11 info@iec.ch www.jec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore lie ch/csc and collected If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch. IEC TR 63307:2020

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 000 terminological entries in English and French, with equivalent terms in 16 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary

67 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

https://standards.iteh.ai/catalog/standards/sist/b6b1f532-c66b-4d77-bea5-

5b171b8fca3b/iec-tr-63307-2020

Edition 1.0 2020-11

TECHNICAL REPORT

Measurement methods of the complex relative permeability and permittivity of noise suppression sheet (standards.iteh.ai)

IEC TR 63307:2020 https://standards.iteh.ai/catalog/standards/sist/b6b1f532-c66b-4d77-bea5-5b171b8fca3b/iec-tr-63307-2020

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 29.100.10

ISBN 978-2-8322-9085-9

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FC	DREWO	RD	6					
IN	TRODU	CTION	8					
1	Scope	9	9					
2	Norm	Normative references						
3	Term	Terms definitions and symbols 9						
	3 1	Terms and definitions	9					
	3.2	Symbols	9					
4	Gene	ral						
5	Meas	Jeasurement methods						
•	5 1	Inductance method	11					
	511	Measurement parameters	11					
	512	Measurement frequency and accuracy	11					
	5.1.3	Measurement principle.						
	5.1.4	Test sample						
	5.1.5	Test fixture	14					
	5.1.6	Measurement environment	14					
	5.1.7	Measurement uncertainty	14					
	5.1.8	Measurement system	16					
	5.1.9	Measurement procedure	16					
	5.1.10	Example of measurement desures site h.ai)	16					
	5.1.1 ⁻	1 Remarks	17					
	5.2	Nicolson Ross Weir method . <u>IEC TR 63307:2020</u>	18					
	5.2.1	Principie/standards.iteh.ai/catalog/standards/sist/b6b1f532-c66b-4d77-bea5-	18					
	5.2.2	Measurement frequency and accuracy	20					
	5.2.3	Measurement parameters	20					
	5.2.4	Test sample	20					
	5.2.5	Measurement environment	21					
	5.2.6	Measurement uncertainly	21					
	5.2.7	Measurement system	22					
	5.2.8	Test fixture	22					
	5.2.9	Measurement procedure	22					
	5.2.10) Example of measurement results	23					
	5.2.1	1 Remarks	23					
	5.3	Short-circuited microstrip line method	24					
	5.3.1	Principle	24					
	5.3.2	Measurement frequency and accuracy	25					
	5.3.3	Measurement parameters	25					
	5.3.4	Test sample	25					
	5.3.5	Measurement environment						
	5.3.6	Measurement system						
	5.3.7	l est fixture (MSL jig)						
	5.3.8	Measurement procedure						
	5.3.9							
	5.3.10	J Remarks						
	Э.4 Елл	Short-circuited coaxial line method	28∠					
	5.4. I	การเกิดที่สามารถอาการการการการการการการการการการการการการ	∠ð					

5.4.2	Measurement frequency and accuracy	29			
5.4.3	Measurement parameters				
5.4.4	Test sample				
5.4.5	Measurement environments				
5.4.6	Measurement system				
5.4.7	Test fixture (coax jig)	31			
5.4.8	Measurement procedure	31			
5.4.9	Results (example)				
5.4.10	Remarks				
5.5 Shi	elded loop coil method				
5.5.1	Measurement principle				
5.5.2	Measurement frequency and accuracy				
5.5.3	Measurement parameters				
5.5.4	NSS sample dimension and recommendation				
5.5.5	Measurement environment				
5.5.6	Measurement system				
5.5.7	Measurement procedure				
5.5.8					
5.5.9	Summary				
5.6 Hai	Theory Tob STANDADD DDEV/IEW/				
5.6.1					
5.6.2	Permeability evaluation				
5.0.3	Permittivity evaluation	53			
inductance m	ethod				
Annex B (info	https://standards.iteh.ai/catalog/standards/sist/b6b1f532-c66b-4d77-bea5- rmative) Short-circuited microstrip line-method	61			
B 1 Fur	adamental calculation	61			
B.1 Fui B.2 Det	remination of C and C				
D.2 Del	C_{S} and C_{S} and C_{S}				
B.3 Det	ermination of demagnetization factor N and coupling coefficient η				
B.4 Ana	alysis with the software to determine the μ_r	64			
Annex C (info	rmative) Short-circuited coaxial line method	66			
C.1 Fur	ndamental calculation to determine μ_{r}	66			
C.2 Op	en-circuited coaxial line	67			
C.2.1	Measurement of effective permittivity $\varepsilon_r (\varepsilon'_r - j\varepsilon''_r)$	67			
C.2.2	Example of the complex permittivity	70			
C.3 Rei	narks on lumped element approximation	71			
Bibliography.	· · · · · · · · · · · · · · · · · · ·	73			
Figure 1 – In-	plane and perpendicular measurement direction of NSS sample	11			
Figure 2 To	raidal abanad aampla aut from the NSS	10			
		12			
Figure 3 – Test fixture with a toroidal-shaped NSS sample					
Figure 4 – Equivalent circuit model of the test fixture					
Figure 5 – Schematic diagram of measurement system16					
Figure 6 – Measurement results of NSS samples17					
Figure 7 – Schematic diagram of a test fixture with a sample and signal flow graph					
Figure 8 – Cro	oss section of coaxial line with NSS				
Figure 9 $-$ Dir	nensions of test sample	21			
		· · · · · · · · · · · · · · · · · · ·			

Figure 10 – Schematic diagram of equipment system for measurement	22
Figure 11 – Specification for test fixture of a 7 mm coaxial transmission line	22
Figure 12 – Measurement results of noise suppression sheet	23
Figure 13 – Equivalent circuits for the MSL	25
Figure 14 – Rectangular shape of NSS sample	26
Figure 15 – Measurement system	26
Figure 16 – Short-circuited microstrip line test fixture (MSL jig)	27
Figure 17 – Complex relative permeability of a NSS sample C with 0,236 mm thickness, as measured at $N = 0$ (and $\eta = 0,135$ 2) and corrected by demagnetization factor $N = 0,037$ (and $\eta = 0,135$ 2)	28
Figure 18 – Equivalent circuits for the coax jig	29
Figure 19 – Toroidal shape of NSS sample	30
Figure 20 – Measurement system	31
Figure 21 – Short-circuited coaxial line test fixture (coax iig)	31
Figure 22 – Complex relative permeability of a NSS sample A with 0,29 mm thickness, as measured and corrected by the permittivity	32
Figure 23 – Complex relative permeability of a NSS sample B with 0,25 mm thickness, as measured and corrected by the effective permittivity	33
Figure 24 – Structure of shielded loop coil	34
Figure 25 – Shielded loop coil and NSS sample arrangement VIEW	34
Figure 26 – Whole structure of the measuring unit of the equipment	35
Figure 27 – DC magnetization curve	38
Figure 28 – Estimation of absolute value correction coefficient M_{s}	38
https://standards.iteh.ai/catalog/standards/sist/b6b1f532-c66b-4d77-bea5- Figure 29 – Recommended shape of NSScample-63307-2020	39
Figure 30 – Block diagram of measurement system	40
Figure 31 – Measured complex relative permeability as a function of the size of a NSS sheet (Sample A-01)	42
Figure 32 – Measured complex relative permeability as a function of the size of a NSS sheet (Sample B-01)	43
Figure 33 – Measured complex relative permeability of a NSS sheet as a function of DC bias field intensity (Sample A-02)	43
Figure 34 – Measured complex relative permeability after absolute value calibration (Sample A-01)	44
Figure 35 – Measured complex relative permeability after absolute value calibration (Sample B-01)	44
Figure 36 – Electromagnetic flux to evaluate permeability in the harmonic resonance cavity resonator	47
Figure 37 – Example of the resonance characteristics change	47
Figure 38 – Cavity resonator for 3,6 GHz to 7,2 GHz	48
Figure 39 – Cavity resonator for 0,25 GHz to 2 GHz	48
Figure 40 – Examples of resonance frequencies	49
Figure 41 – Example of the resonance curves of a harmonic resonance cavity	49
Figure 42 – Examples of samples	50
Figure 43 – Measuring system	50
Figure 44 – Sample installation in the cavity for the permeability measurement	51
Figure 45 – Measured results of the permeability for Sample A and B and a copper rod	53

Figure 46 – Electromagnetic flux to evaluate permittivity in the harmonic resonance cavity resonator	53
Figure 47 – Sample installation in the cavity for the permittivity measurement	55
Figure 48 – Adjustment procedure and adjusted results	56
Figure 49 – Measured results of the permittivity for the two samples, A and B	58
Figure B.1 – Complex relative permeabilities of Sample C with 0,236 mm thickness for toroidal shape and rectangular shape corrected by N = 0,037 and η = 0,135 2	64
Figure B.2 – Complex relative permeabilities of Sample C with 0,236 mm thickness for rectangular shape corrected by $N = 0$, 0,018 5 and 0,037 with $\eta = 0,135$ 2	65
Figure B.3 – Complex relative permeabilities of Sample C with 0,236 mm thickness for rectangular shape corrected by η = 0,225 3, 0,169 and 0,135 2 with N = 0,037	65
Figure C.1 – Open-circuited coaxial line jig	68
Figure C.2 – Equivalent circuits for the open-circuited coaxial line	68
Figure C.3 – Complex relative permittivity of NSS Sample A with 0,29 mm thickness, as measured and corrected by the permeability	71
Figure C.4 – Complex relative permittivity of NSS Sample B with 0,25 mm thickness, as measured and corrected by the permeability	71
Figure C.5 – Dependence of phase shift βt on frequency	72
Table 1 – Measurement method and frequency	10

INTERNATIONAL ELECTROTECHNICAL COMMISSION

MEASUREMENT METHODS OF THE COMPLEX RELATIVE PERMEABILITY AND PERMITTIVITY OF NOISE SUPPRESSION SHEET

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies 07:2020
- 6) All users should ensure that they have the latest earther of this publication 6b-4d77-bea5-
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. However, a technical committee may propose the publication of a technical report when it has collected data of a different kind from that which is normally published as an International Standard, for example "state of the art".

IEC TR 63307, which is a technical report, has been prepared by IEC technical committee 51: Magnetic components, ferrite and magnetic powder materials.

The text of this Technical Specification is based on the following documents:

Draft TR	Report on voting
51/1349/DTR	51/1356/RVDTR

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this Technical Report is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/standardsdev/publications.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

iTeh STANDARD PREVIEW (standards.iteh.ai)

INTRODUCTION

Noise suppression sheet (NSS) is used near the source of high frequency electromagnetic noise, path of noise propagation and source of emission. It is used like a patch and is different from an electromagnetic wave absorber in free space. IEC 62333-2 specifies five measurement methods in order to estimate the effect of NSS. To evaluate the effect by computer simulation, it is indispensable to know the frequency characteristics of both permeability and permittivity. And to make a rough estimate of the noise suppression effect of NSS, it is useful to understand effective permeability and effective permittivity, which are the permeability and permittivity of an actually used shape.

As most NSSs are flexible, and both complex relative permeability and complex relative permittivity have anisotropy, careful study and understanding of the principles are indispensable for the measurement of the frequency characteristics of permeability and permittivity.

There are various methods to measure permeability and permittivity under the frequency range where NSS is used. This document is intended to be used for the proper selection of the measurement method and the preparation of the test sample to achieve the above purpose when measuring permeability and permittivity, the two parameters which largely influence the noise suppression effect of the NSS.

iTeh STANDARD PREVIEW (standards.iteh.ai)

MEASUREMENT METHODS OF THE COMPLEX RELATIVE PERMEABILITY AND PERMITTIVITY OF NOISE SUPPRESSION SHEET

-9-

1 Scope

This document provides guidelines on the methods for measuring the frequency characteristics of permeability and permittivity in the frequency range of 1 MHz to 6 GHz for a noise suppression sheet for each electromagnetic noise countermeasure.

2 Normative references

There are no normative references in this document.

3 Terms, definitions and symbols

3.1 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses: (standards.iteh.ai)

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp 7-bea5-

3.1.1

noise suppression

suppression which consists of signal decoupling, radiation suppression and attenuation of the transmission power of noise by an electronic product

5b171b8fca3b/iec-tr-63307-2020

Note 1 to entry: Each function above is achieved by absorption and/or shielding.

3.1.2

noise suppression sheet

NSS

sheet which enables noise suppression and is composed of magnetic, dielectric or conductive material with electromagnetic losses

EXAMPLE Sheet made of soft magnetic metal powder and resin or rubber.

3.1.3

suppression ratio

ratio of the noise level with and without suppression sheets

Note 1 to entry: The suppression ratio is classified into intra-decoupling ratio, inter-decoupling ratio, transmission attenuation power ratio and radiation suppression ratio. It is expressed in dB.

3.2 Symbols

- $\mu_{\rm r}$ complex relative permeability
- μ'_{r} real part of complex relative permeability
- $\mu_{r}^{"}$ imaginary part of complex relative permeability
- ε_r complex relative permittivity

- 10 -

۰ſ	
<i>ɛ</i> ″ _r	imaginary part of complex relative permittivity
Ζ	impedance (Ω)
$\omega = 2\pi f$	angular frequency (rad/s)
Ι	current (A)
$B = \mu_0 \mu_r H$	magnetic flux density (T)
Н	magnetic field strength (A/m)
μ_0	permeability of vacuum ($4\pi \times 10^{-7}$ H/m)
f	frequency

4 General

<u>ر،</u>

Composite materials made by embedding magnetic metal flakes in a plastic sheet are widely used in PCs or mobile phone handsets. This sheet is well known as a noise suppression sheet (NSS) and is used to reduce unwanted signals in transmission lines or unwanted couplings between circuit elements in the devices described above.

Electromagnetic compatibility (EMC) designers recently have been using simulations for the design of the circuit boards for PCs and mobile phone handsets. In these simulations, it is important to know the complex relative permeability μ_r and the complex relative permittivity ε_r of NSS. This document shows the six measurement methods of μ_r and ε_r of NSS. The measurement frequency range is from 1 MHz to 6 GHz, as shown in Table 1. Figure 1 illustrates the in-plane and perpendicular measurement direction of Table 1.

	$\mu_{\rm r}$ and $\varepsilon_{\rm r}$				Frequency				
Method Name	In-plane		Perpendicular						
	$\mu_{\rm r}$	€ _r	$\mu_{\rm r}$	ε _r	1 MHz to 10 MHz	100 MHz	1 GHz	10 GHz	100 GHz
5.1 Inductance	0				1 N	/Hz to 1 GF	łz		
5.2 Nicolson Ross Weir	0	0						500 MHz to	
5.3 Short- circuited micro strip line	0					10	MHz to 10) GHz	
5.4 Short- circuited coaxial line	0	0				1 MHz	to 18 GH	lz	
5.5 Shielded loop coil	0					1 MHz to	o 10 GHz]
5.6 Harmonic	0		0				250) MHz to 18 Gi	Hz
perturbation		0		0				1,8 MHz	

https://standards.iteh.ai/catalog/standards/sist/b6b1f532-c66b-4d77-bea5-

Table 1 - Measurement method and frequency

Range of frequency (1 MHz to 6 GHz)

Figure 1 – In-plane and perpendicular measurement direction of NSS sample

5 Measurement methods

5.1 Inductance method

5.1.1 Measurement parameters

The measurement parameters of a magnetic material are defined as follows:

$$\mu_{\mathbf{r}} = \mu_{\mathbf{r}}' - \mathbf{j}\mu_{\mathbf{r}}'' \tag{1}$$

where

conditions:

iTeh STANDARD PREVIEW

 μ'_r and μ''_r are the real part and the imaginary part of the complex relative permeability, respectively. (standards.iteh.ai)

5.1.2 Measurement frequency and accuracy 7:2020

https://standards.iteh.ai/catalog/standards/sist/b6b1f532-c66b-4d77-bea5-The objective of this method is to evaluate the tin-plane permeability of toroidal-shaped thin NSS samples shown in Figure 2 and is applicable for the measurements under the following

frequency	:	1 MHz ≤ f ≤ 1 GHz
relative permeability	:	$1 \le \mu'_{\rm r} \le 1\ 000$
		$0 \le \mu_{\rm r}'' \le 1\ 000$
accuracy	:	value error ±20 % for $\mu_{ m r}'$
		value error ±20 % for μ_r''

The measurement frequency range is affected by the dimensions and the permeability values of the NSS sample. The higher the permittivity, the lower the upper limit of the frequency range will be.

- 12 -

Figure 2 – Toroidal-shaped sample cut from the NSS

5.1.3 Measurement principle

The test fixture shown in Figure 3 forms the ideal one-turn inductor. The self-inductance is given by

$$\frac{Z}{j\omega} = \frac{1}{I} \int_{S} B \, ds \tag{2}$$

where

Zis the impedance (Ω) ; $\omega = 2\pi f$ is the angular frequency (rad/s) ards.iteh.ai)Iis the current (A); $B = \mu_0 \mu_r H$ is the magnetic flux density (Π) ; TR 63307:2020His the Magnetic field strength (A/m);ec-tr-63307-2020 μ_0 is the permeability of vacuum $(4\pi \times 10^{-7} \text{ H/m})$;Sis the surface shown in Figure 3.

Therefore, the complex relative permeability is

$$u_{\rm r} = \frac{2\pi}{\mu_0} \frac{Z_{\rm m} - Z_{\rm sm}}{j\omega F} + 1 = \frac{2\pi}{\mu_0} \frac{Z_{\rm NSS}}{j\omega F} + 1$$
(3)

or

$$\mu_{\rm r}' = \frac{2\pi}{\mu_0} \frac{x_{\rm m} - x_{\rm sm}}{\omega {\rm F}} + 1 = \frac{2\pi}{\mu_0} \frac{x_{\rm NSS}}{\omega {\rm F}} + 1$$
(4)

$$\mu_{\rm r}^{\prime\prime} = \frac{2\pi}{\mu_0} \frac{r_{\rm m} - r_{\rm sm}}{\omega \rm F} = \frac{2\pi}{\mu_0} \frac{r_{\rm NSS}}{\omega \rm F}$$
(5)

where

 $Z_{\rm m} = r_{\rm m} + jx_{\rm m}$ is the measured impedance with a sample; $Z_{\rm sm} = r_{\rm sm} + jx_{\rm sm}$ is the measured impedance without a sample (in short state); $Z_{\rm NSS} = r_{\rm NSS} + jx_{\rm NSS}$ is the impedance of a NSS sample;

 $F = t \ln\left(\frac{b}{a}\right)$ is the shape factor of a sample, inner diameter *a*, outer diameter *b*, and thickness *t*.

- 13 -

 Z_{sm} is used to minimize errors due to residual impedance by compensation. The equivalent circuit model of the test fixture is shown in Figure 4. g_p + jb_p is the admittance of the test fixture and its effect can be neglected in a simplified case. Therefore, the impedance Z_{NSS} of a NSS sample is $Z_m - Z_{sm}$.

The derivation procedure is shown in detail in Annex A.

Figure 4 – Equivalent circuit model of the test fixture