

Edition 1.0 2022-02

TECHNICAL SPECIFICATION

(standards.iteh.ai)

IEC TS 63349-2:2022 https://standards.iteh.ai/catalog/standards/sist/8e894640eed7-4ec0-9950-1ea62ca7c27a/iec-ts-63349-2-2022

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2022 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Secretariat 3, rue de Varembé CH-1211 Geneva 20 Switzerland Tel.: +41 22 919 02 11 info@iec.ch www.jec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service OS.Iten.ai) Centre: sales@iec.ch.

IEC Products & Services Portal - products.iec.ch

Discover our powerful search engine and read freely all the publications previews. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 300 terminological entries in English and French, with equivalent terms in 19 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC TS 63349-2:2022

https://standards.iteh.ai/catalog/standards/sist/8e894640-eed7-4ec0-9950-1ea62ca7c27a/iec-ts-63349-2-2022

Edition 1.0 2022-02

TECHNICAL SPECIFICATION

IEC TS 63349-2:2022

https://standards.iteh.ai/catalog/standards/sist/8e894640-eed7-4ec0-9950-1ea62ca7c27a/iec-ts-63349-2-2022

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 27.160

ISBN 978-2-8322-1072-2

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FOF	FOREWORD						
INT	NTRODUCTION						
1	Scop	e	6				
2	Norm	ative references	6				
3	Term	s and definitions	6				
4 Equipment configuration and operation modes							
4	l.1	Equipment configuration	7				
Z	1.2	Power flow direction	7				
4	1.3	Operation modes	8				
2	1.4	Operation mode under different equipment configurations	8				
5 Graphic display							
5	5.1	General	. 10				
5	5.2	Information on display	. 10				
	5.2.1	Required information on display	.10				
	5.2.2	Recommended information on display	.10				
	5.2.3	Elements of display	.11				
	5.2.4	Examples of display	.11				
Figu	Figure 1 – Common elements on th <mark>e display</mark> 1						
Figu	Figure 2 – Display of operation mode PA//P→A12						
Figu	Figure 3 – Display of operation mode PAG//P-GS.Iteh.al)						
Figure 4 – Display of operation mode PAS//S→A13							
Figu	Figure 5 – Display of operation mode PAGS//G34AS2:2022						
		https://standards.iteh.ai/catalog/standards/sist/8e894640-					
Tab	Table 1 – Equipment notation 7777						
Tab	Table 2 – Operation mode under equipment configuration PA						
Tab	Table 3 – Operation modes under equipment configuration PAG9						
Tab	Table 4 – Operation modes under equipment configuration PAS						
Tab	Table 5 – Operation modes under equipment configuration PAGS						

INTERNATIONAL ELECTROTECHNICAL COMMISSION

PHOTOVOLTAIC DIRECT-DRIVEN APPLIANCE CONTROLLERS -

Part 2: Operation modes and graphic display

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technicat committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

IEC TS 63349-2 has been prepared by IEC technical committee 82: Solar photovoltaic energy systems. It is a Technical Specification.

The text of this Technical Specification is based on the following documents:

Draft	Report on voting
82/1948/DTS	82/1984/RVDTS 82/1984A/RVDTS

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this Technical Specification is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/standardsdev/publications.

A list of all parts in the IEC 63349 series, published under the general title *Photovoltaic directdriven appliance controllers*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The "colour inside" logo on the cover page of this document indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

PREVIEW (standards.iteh.ai)

IEC TS 63349-2:2022

https://standards.iteh.ai/catalog/standards/sist/8e894640-eed7-4ec0-9950-1ea62ca7c27a/iec-ts-63349-2-2022

INTRODUCTION

The distributed solar energy industry has been developing rapidly in recent years. Utilizing photovoltaic (PV) installation to drive appliances directly is more and more popular among solar energy applications, which will boost energy efficiency, simplify control system, reduce dependence on electrical grid and expand solar energy application. Photovoltaic direct-driven appliances (PVDDA) are an emerging type of PV installation. The PVDDA controller is an essential component of the PVDDA that lacks standardization. When PVDDA is operating, users might want to have a graphic display to monitor the real-time status and energy generating/consuming situation, which is what this document focuses on.

iTeh STANDARD PREVIEW (standards.iteh.ai)

IEC TS 63349-2:2022 https://standards.iteh.ai/catalog/standards/sist/8e894640eed7-4ec0-9950-1ea62ca7c27a/iec-ts-63349-2-2022

PHOTOVOLTAIC DIRECT-DRIVEN APPLIANCE CONTROLLERS –

- 6 -

Part 2: Operation modes and graphic display

1 Scope

This part of IEC 63349 defines operation modes of photovoltaic direct-driven appliance (PVDDA) controllers and describes one example of a graphic display. The graphic display is an interface to PVDDA users, which uses easily understood graphics to show a real-time operation mode, such as what equipment is installed, controlled and monitored in the system, which equipment is generating power and how much it generates, and which equipment is consuming power and how much it consumes. This helps with user's interest, knowledge, planning on renewable energy usage.

IEC 63349 is a series of standards for PVDDA controllers which can be used in various appliances including air conditioners, water pumps, refrigerators, etc. These standards only cover the requirements of PVDDA controllers.

Requirements for appliances are covered by their specific standards, for example, standards developed by IEC TC 59 on performance of household and similar electrical appliances, or by IEC TC 61 on safety of household and similar electrical appliances.

2 Normative references (standards.iteh.ai)

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) appliesps://standards.iteh.ai/catalog/standards/sist/8e894640eed7-4ec0-9950-1ea62ca7c27a/iec-ts-63349-2-2022

IEC TS 61836, Solar photovoltaic energy systems – Terms, definitions and symbols

IEC 61850-7-420, Communication networks and systems for power utility automation – Part 7-420: Basic communication structure – Distributed energy resources and distribution automation logical nodes

IEC 63349-1, Photovoltaic direct-driven appliance controllers – Part 1: General requirements¹

3 Terms and definitions

For the purposes of this document, the terms and definitions given in IEC TS 61836, IEC 63349-1 as well as the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

¹ To be published.

3.1

PV direct-driven appliance (PVDDA) controller

controller used for converting and regulating power conditions and flows among PV array, grid, energy storage, etc., and appliances (such as air-conditioner, refrigerator)

3.2

equipment configuration

combination of one or more equipment installed in a given PVDDA system

3.3

operation mode

real-time working status of a given PVDDA system with various energy flows "from" and "to" different equipment

3.4

power from

one or more equipment supplying power under specific operation mode, such as PV array or battery under discharging condition

3.5

4

power to

one or more equipment consuming power under specific operation mode, such as appliance, or battery under charging condition charging ch

Equipment configuration and operation modes

4.1 Equipment configuration and ards.iteh.ai)

Equipment configuration indicates what type of equipment is installed in the PVDDA system. PV array and appliance within the scope of this document are two pieces of essential equipment. The system may also include one or more of these: electrical grid, energy storage, and other equipment. Table 1 shows the notations of the equipment and their orders on operation mode description. eed7-4ec0-9950-1ea62ca7c27a/iec-ts-63349-2-2022

No.	Notation	Equipment
1	Р	Photovoltaic array
2	А	Appliance
3	G	electrical Grid
4	S	energy Storage
5	V	electrical Vehicle
6	W	Wind turbine
7	F	Fuel cell
8	Н	Hydraulic turbine
9	E1	other Equipment 1
10	E2	other Equipment 2

Table 1 – Equipment notation

4.2 Power flow direction

From power flow direction point of view, installed equipment can be unidirectional or bidirectional:

- P is unidirectional equipment, only for power generation, or "power from". In some special cases, such as PV array running a PID recovering mode, that is to supply reverse DC current to PV array, PV array becomes a power consumption equipment, or "power to'. However, these special cases are beyond the scope of this document, and will not be discussed hereinafter.
- A is unidirectional equipment, only for power consumption, or "power to".
- G and S are bi-directional equipment. As a power source or "power from", they provide power to other equipment. They can also consume power or "power to", such as supplying electricity to the grid, or charging the battery.
- V, W, F, H, and others, depending on the nature of the equipment, could be unidirectional or bi-directional. The Wind turbine is unidirectional equipment. The Fuel cell may be bi-directional if it can run reversely to generate and store hydrogen. Hydraulic generator may also be bi-directional if it can pump water reversely to a higher level reservoir for energy storage.

4.3 Operation modes

The purpose of defining operation modes is to facilitate information and command communication between the controller and different equipment. The general communication network is defined and described in IEC 61850-7-420. Specific application of this communication network to PVDDA system may be developed in a later edition.

An Operation mode is described by 3 plocks. The first block is equipment configuration, followed by a double slash (//), then the second block is for "power from", followed by an arrow (\rightarrow), and the third block for "power to".

Equipment configuration//Power from→Power to (Standards.iten.al)

In each block, equipment notations should be in the order presented in Table 1, and if any of these equipment is not presented in a block, just omit it

For example: https://standards.iteh.ai/catalog/standards/sist/8e894640eed7-4ec0-9950-1ea62ca7c27a/iec-ts-63349-2-2022

PAGS//PG→A

where:

- PAGS The First block is equipment configuration: installed equipment includes PV array, appliance, electrical grid, and energy storage;
- PG The Second block is power from: power is from PV array and electrical grid. S is not in this block, because the energy storage is not providing power;
- A The third block is power to: power is consumed by appliance. S and G are not present in this block, because the energy storage and the grid are not consuming power in this case.

4.4 Operation mode under different equipment configurations

Four common equipment configurations are PA, PAG, PAS, and PAGS. Under each of these configurations, there could be one or more operation modes.

Equipment configuration PA: equipment includes PV array and appliances. There is only one operation mode under this equipment configuration, and it is shown in Table 2.