

Designation: F877 – 19

An American National Standard

Standard Specification for Crosslinked Polyethylene (PEX) Hot- and Cold-Water Distribution Systems¹

This standard is issued under the fixed designation F877; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope*

- 1.1 This specification covers requirements, test methods, and marking requirements for system components when tested with nominal SDR9 crosslinked polyethylene (PEX) tubing as a system. Systems are intended for 100 psi (0.69 MPa) water service up to and including a maximum working temperature of 180 °F (82 °C). Requirements and test methods are included for materials, workmanship, dimensions and tolerances, burst pressure, hydrostatic sustained pressure, excessive temperature and pressure, corrosion resistance, and thermocycling tests. The components covered by this specification are intended for use in, but not limited to, residential and commercial hot and cold potable water distribution systems or other applications such as reclaimed water, fire protection, municipal water service lines, radiant heating and cooling systems, hydronic distribution systems, snow and ice melting systems, geothermal ground loops, district heating, turf conditioning, compressed air distribution, and building services pipe.
- 1.2 The text of this specification references notes, footnotes, and appendixes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the specification.
- 1.3 The values stated in inch-pound units are to be regarded as the standard. The values stated in parentheses are provided for information only.

Note 1—Suggested hydrostatic design stresses and hydrostatic pressure ratings for tubing and fittings are listed in Appendix X1. Design, assembly, and installation considerations are discussed in Appendix X2. An optional performance qualification and an in-plant quality control program are recommended in Appendix X3.

1.4 The following safety hazards caveat pertains only to the test method portion, Section 7, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and

environmental practices and determine the applicability of regulatory limitations prior to use.

1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:²

D618 Practice for Conditioning Plastics for Testing

D1598 Test Method for Time-to-Failure of Plastic Pipe Under Constant Internal Pressure

D1599 Test Method for Resistance to Short-Time Hydraulic Pressure of Plastic Pipe, Tubing, and Fittings

D1600 Terminology for Abbreviated Terms Relating to Plastics

D2749 Symbols for Dimensions of Plastic Pipe Fittings

D2837 Test Method for Obtaining Hydrostatic Design Basis for Thermoplastic Pipe Materials or Pressure Design Basis for Thermoplastic Pipe Products

F412 Terminology Relating to Plastic Piping Systems

F876 Specification for Crosslinked Polyethylene (PEX) Tubing

F1807 Specification for Metal Insert Fittings Utilizing a Copper Crimp Ring, or Alternate Stainless Steel Clamps, for SDR9 Cross-linked Polyethylene (PEX) Tubing and SDR9 Polyethylene of Raised Temperature (PE-RT) Tubing

F1960 Specification for Cold Expansion Fittings with PEX Reinforcing Rings for Use with Cross-linked Polyethylene (PEX) and Polyethylene of Raised Temperature (PE-RT) Tubing

F2080 Specification for Cold-Expansion Fittings with Metal Compression-Sleeves for Crosslinked Polyethylene (PEX) Pipe and SDR9 Polyethylene of Raised Temperature (PE-RT) Pipe

¹ This specification is under the jurisdiction of ASTM Committee F17 on Plastic Piping Systems and is the direct responsibility of Subcommittee F17.61 on Water. Current edition approved Nov. 1, 2019. Published November 2019. Originally approved in 1984. Last previous approved 2018 as F877 – 18a. DOI: 10.1520/F0877-19.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

- F2098 Specification for Stainless Steel Clamps for Securing SDR9 Cross-linked Polyethylene (PEX) Tubing and SDR9 Polyethylene of Raised Temperature (PE-RT) to Metal Insert and Plastic Insert Fittings
- F2159 Specification for Plastic Insert Fittings Utilizing a Copper Crimp Ring, or Alternate Stainless Steel Clamps for SDR9 Crosslinked Polyethylene (PEX) Tubing and SDR9 Polyethylene of Raised Temperature (PE-RT) Tubing
- F2434 Specification for Metal Insert Fittings Utilizing a Copper Crimp Ring for SDR9 Cross-linked Polyethylene (PEX) Tubing and SDR9 Cross-linked Polyethylene/ Aluminum/Cross-linked Polyethylene (PEX-AL-PEX) Tubing
- F2735 Specification for Plastic Insert Fittings For SDR9 Cross-linked Polyethylene (PEX) and Polyethylene of Raised Temperature (PE-RT) Tubing
- F2854 Specification for Push-Fit Crosslinked Polyethylene (PEX) Mechanical Fittings for Crosslinked Polyethylene (PEX) Tubing
- F3347 Specification for Metal Press Insert Fittings with Factory Assembled Stainless Steel Press Sleeve for SDR9 Cross-linked Polyethylene (PEX) Tubing
- F3348 Specification for Plastic Press Insert Fittings with Factory Assembled Stainless Steel Press Sleeve for SDR9 Cross-linked Polyethylene (PEX) Tubing
- 2.2 ANSI Standards:
- B 36.10 Welded and Seamless Wrought Steel Pipe³
- 2.3 AWWA Standard:

Manual M-11, Steel Pipe Design and Installation⁴

2.4 Federal Standard:

Fed Std. No. 123 Marking for Shipment (Civil Agencies)⁵

2.5 Military Standard:

MIL-STD-129 Marking for Shipment and Storage⁵

2.6 NSF Standard:

NSF/ANSI Standard No. 14 for Plastic Piping Components and Related Materials⁶

NSF/ANSI Standard No. 61 for Drinking Water System Components-Health Effects⁶

3. Terminology

- 3.1 The terminology used in this specification is in accordance with Terminology F412, Terminology D1600, and Symbols D2749, unless otherwise specified. The abbreviation for crosslinked polyethylene is PEX. Plastic tubing denotes a particular diameter schedule of plastic pipe in which outside diameter of the tubing is equal to the nominal size plus ½ in. Plastic pipe outside diameter schedule conforms to ANSI B 36.10.
 - 3.2 Definitions of Terms Specific to This Standard:

- 3.2.1 *crosslinked polyethylene plastics*—a polyethylene material that has undergone a change in molecular structure through processing whereby a majority of the polymer chains are chemically linked.
- 3.2.2 fitting—a piping component used to join or terminate sections of PEX tubing or to provide changes of direction or branching in a piping system. This includes appurtenances such as couplings, elbows, tees, or plugs used to connect tubing or as an accessory to tubing.
- 3.2.3 standard dimension ratio (SDR)—the ratio of outside diameter to wall thickness. For PEX tubing, it is calculated by dividing the average outside diameter of the tubing in inches or in millimeters by the minimum wall thickness in inches or millimeters. If the wall thickness calculated by this formula is less than 0.070 in. (1.78 mm) it shall be arbitrarily increased to 0.070 in. except for nominal tubing sizes 5/16 and smaller, as specified in Table 3. The SDR values shall be rounded to the nearest 0.5.
- 3.2.4 *manifold*—an appurtenance that has at least one inlet and multiple outlets with integral fittings, valves, or both.
- 3.2.5 *system components*—fittings, valves with integral fittings, and manifolds which connect directly to PEX tubing made in accordance with Specification F876.
- 3.2.6 system component assembly—system component connected directly to PEX tubing made in accordance with Specification F876.

4. Materials

- 4.1 *General*—PEX systems shall use crosslinked polyethylene tubing as described in Specification F876.
- 4.2 Fitting and manifold materials shall meet the applicable requirements as described in Specifications F1807, F1960, F2080, F2098, F2159, F2434, F2735, F2854, F3347 or F3348.
- 4.3 Certification—PEX tubing and system components, used for the distribution of potable water, shall be products approved for that service by the regulatory bodies having such jurisdiction. These products shall be tested for that service by a nationally recognized testing laboratory that is accredited for this specification and shall bear the certification mark of the testing agency.

5. Classification

5.1 Fittings—This specification classifies fittings, including system components, intended for use in systems with PEX tubing, by a maximum continuous use temperature that shall be 180 °F (82 °C) and by nominal tubing sizes (NTS) from ½ through 6 on the basis of resistance to burst pressure, hydrostatic sustained pressure, excessive temperature pressure capability, and by thermocycling. Fittings shall be compatible with tubing made to the requirements of Specification F876.

6. Requirements

6.1 *General*—Compliance with this specification requires that fittings contained in Specifications F1807, F1960, F2080, F2098, F2159, F2434, F2735, F2854, F3347 and F3348 and system components must meet all requirements of this section.

³ Available from American National Standards Institute (ANSI), 25 W. 43rd St., 4th Floor, New York, NY 10036, http://www.ansi.org.

⁴ Available from American Water Works Association (AWWA), 6666 W. Quincy Ave., Denver, CO 80235, http://www.awwa.org.

⁵ Available from DLA Document Services, Building 4/D, 700 Robbins Ave., Philadelphia, PA 19111-5094, http://quicksearch.dla.mil.

⁶ Available from NSF International, P.O. Box 130140, 789 N. Dixboro Rd., Ann Arbor, MI 48113-0140, http://www.nsf.org.

- 6.2 Workmanship—Fittings shall be homogeneous throughout, uniform in appearance and free of cracks, holes, blisters, voids, foreign inclusions, or other defects that are visible to the naked eye and may affect fitting integrity. All sealing surfaces shall be smooth and free of foreign material.
 - 6.3 Dimensions and Tolerances:
- 6.3.1 The dimensions and tolerances of fittings shall meet the specific requirements contained in Specifications F1807, F1960, F2080, F2098, F2159, F2434, F2735, F3347 and F3348 or other recognized specification.
- 6.4 Corrosion Resistance—Fittings intended for potable water applications shall comply with dezincification resistance and stress corrosion cracking resistance requirements of NSF/ANSI Standard 14.
 - 6.5 Hydrostatic Burst:
- 6.5.1 System component assemblies assembled using the manufacturer's instructions shall meet the minimum hydrostatic burst requirements shown in Table 1 when tested in accordance with 7.7.
- 6.5.2 System components with integral shut-offs (valves) shall be tested with all ports in the full-open or unrestricted position.
- 6.5.2.1 If the system component assembly has more than one connection size, the test pressure selected from Table 1 shall be based upon the largest nominal PEX connection.
 - 6.6 Hydrostatic Sustained Pressure Strength
- 6.6.1 System component assemblies shall meet the minimum hydrostatic sustained pressure strength requirements shown in Table 2 when tested in accordance with 7.5. Test duration shall be 1000 h.
- 6.6.1.1 System components with integral shut-off (valves) shall be tested with all ports in the full-open or unrestricted position.
 - 6.7 Thermocycling: en al/catalog/standards/sist/c453df
- 6.7.1 System components, assembled using the manufacturer's instructions, shall not leak after completion of 1000 cycles between the temperatures of 60 °F (16 °C) and 180 °F (82 °C) when tested in accordance with 7.6.
- 6.7.1.1 System components with integral shut-offs (valves) shall be tested with all ports in the full open or unrestricted position.

TABLE 1 Burst Pressure Requirements for SDR9 PEX System Component Assemblies

Nominal Tubing Size	Minimum Burst Pressures at Different Temperatures			
	psi ^A at 73 °F	(MPa) at (23 °C)	psi ^A at 180 °F	(MPa) at (82 °C)
1/8	870	(6.00)	390	(2.69)
1/4	752	(5.19)	336	(2.32)
3/8	620	(4.27)	275	(1.90)
1/2	480	(3.31)	215	(1.48)
5% and larger	475	(3.27)	210	(1.45)

A The fiber stress for SDR9 PEX tubing used to derive this test pressure is: at 73 °F (23 °C) 1900 psi (13.10 MPa). at 180 °F (82 °C) 850 psi (5.86 MPa).

TABLE 2 Minimum Hydrostatic Sustained Pressure Requirements for SDR9 PEX System Component Assemblies^A

Nominal Tubing Size	Pressure Required for Test, psi (MPa) ^A		
	180 °F	(82 °C)	
1/8	355	(2.45)	
1/4	305	(2.10)	
3/8	250	(1.72)	
1/2	195	(1.34)	
5/8 and larger	190	(1.31)	

 $^{^{}A}$ The fiber stress for SDR9 PEX tubing used to derive this test pressure is: 770 psi (5.31 MPa) at 180 °F (82 °C).

6.8 Excessive Temperature/Pressure Capability—System component assemblies shall not fail as defined in Test Method D1598 in less than 30 days (720 h) when tested in accordance with 7.8.

Note 2—The rationale for test requirement 6.8 is so that in the event of a domestic hot-water system malfunction, PEX tubing and system components shall have adequate strength to accommodate short-term conditions, 48 h, of 210 °F (99 °C), 150 psi (1034 kPa) until repairs can be made

6.8.1 System components with integral shut-offs (valves) shall be tested with all ports in the full open or unrestricted position.

Note 3—Tests applicable to assemblies and bends (6.5, 6.6, 6.7, and 6.8) are intended to be performance qualification tests and not tests required of each fitting.

7. Test Methods

- 7.1 *General*—Sections 7.4, 7.5, 7.6, 7.7, and 7.8 shall use separate sets of assemblies for each test.
- 7.2 Conditioning—The test specimens should be conditioned at 73 \pm 4 °F (23 \pm 2 °C) and 50 \pm 710 % relative humidity for not less than 40 h prior to test in accordance with Practice D618, for those tests where conditioning is required.
- 7.3 Test Conditions—Conduct the tests in the standard laboratory atmosphere of 73 \pm 4 °F (23 \pm 2 °C) and 50 \pm 5 % relative humidity, unless otherwise specified in the test methods or in this specification.
- 7.4 Sampling—A sufficient quantity of tubing and system components, as agreed upon by the purchaser and the seller, shall be selected and tested to determine conformance with this specification. In the case of no prior agreement, random samples selected by the testing laboratory shall be deemed adequate.
- 7.5 *Hydrostatic Sustained Pressure* Determine in accordance with Test Method D1598, except for the following:
- 7.5.1 Test at least six joints, from randomly selected specimens assembled per the manufacturer's instructions with at least 5-pipe diameters between joints.
 - 7.5.2 Test temperature shall be 180 ± 4 °F (82 ± 2 °C).
 - 7.5.3 The external test environment shall be air or water.
- 7.5.4 Condition the specimens in accordance with Test Method D1598.
 - 7.6 Thermocycling: