

Edition 2.0 2021-11

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Semiconductor devices – Mechanical and climatic test methods – Part 39: Measurement of moisture diffusivity and water solubility in organic materials used for semiconductor components

Dispositifs à semiconducteurs – Méthodes d'essais mécaniques et climatiques – 28d1c6d8b807/iec-60749-39-2021 Partie 39: Mesure de la diffusivité d'humidité et de l'hydrosolubilité dans les matériaux organiques utilisés dans les composants à semiconducteurs

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2021 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland Tel.: +41 22 919 02 11 info@iec.ch www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC online collection - oc.iec.ch

Discover our powerful search engine and read freely all the publications previews. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and 49. once a month by email. https://standards.itch.ai/catalog/standard

The world's leading online dictionary on electrotechnology, containing more than 22 000 terminological entries in English and French, with equivalent terms in 18 additional languages. Also known as the international Electrotechnical Vocabulary (IEV) online.021

IEC Customer Service Centre - webstore.iec.ch/csc8b807/iec-If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

A propos de l'IEC

La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC

Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié.

Recherche de publications IEC -

webstore.iec.ch/advsearchform

La recherche avancée permet de trouver des publications IEC en utilisant différents critères (numéro de référence, texte, comité d'études, ...). Elle donne aussi des informations sur les projets et les publications remplacées ou retirées.

IEC Just Published - webstore.iec.ch/justpublished

Restez informé sur les nouvelles publications IEC. Just Published détaille les nouvelles publications parues. Disponible en ligne et une fois par mois par email.

Service Clients - webstore.iec.ch/csc

Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions contactez-nous: sales@iec.ch.

IEC online collection - oc.iec.ch

Découvrez notre puissant moteur de recherche et consultez gratuitement tous les aperçus des publications. Avec un abonnement, vous aurez toujours accès à un contenu à jour adapté à vos besoins.

Electropedia - www.electropedia.org

Le premier dictionnaire d'électrotechnologie en ligne au monde, avec plus de 22 000 articles terminologiques en anglais et en français, ainsi que les termes équivalents dans 16 langues additionnelles. Egalement appelé Vocabulaire Electrotechnique International (IEV) en ligne.

Edition 2.0 2021-11

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Semiconductor devices – Mechanical and climatic test methods – Part 39: Measurement of moisture diffusivity and water solubility in organic materials used for semiconductor components

IEC 60749-39:2021

Dispositifs à semiconducteurs Méthodes d'essais mécaniques et climatiques – 28d1c6d8b807/iec-60749-39-2021 Partie 39: Mesure de la diffusivité d'humidité et de l'hydrosolubilité dans les matériaux organiques utilisés dans les composants à semiconducteurs

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 31.080.01

ISBN 978-2-8322-1046-7

Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

 Registered trademark of the International Electrotechnical Commission Marque déposée de la Commission Electrotechnique Internationale

CONTENTS

FOF	FOREWORD			
1	Scope	5		
2	Normative references	5		
3	Terms and definitions5			
4	Apparatus5			
5	Samples	6		
6	Procedure	6		
6	.1 Sample preparation	6		
6	.2 Absorption measurements below 100 °C	6		
6	.3 Solubility and diffusivity calculation	9		
6	.4 Desorption measurements above 100 °C	.10		
7	7 Calculation of activation energy for moisture diffusion11			
8	8 Calculation of functional fit for solubility11			
9	9 Summary			
Bibliography12				
Figu	re 1 – Example of linearly increasing mass gain P.R.F.V.I.F.W	8		
Figu mas	re 2 – Alternative intercept method to estimate the reversible Fickian moisture s	9		
	IFC 60749-39 [,] 2021			

https://standards.iteh.ai/catalog/standards/sist/2aff6b5a-3140-4d55-8bbe-28d1c6d8b807/iec-60749-39-2021

INTERNATIONAL ELECTROTECHNICAL COMMISSION

SEMICONDUCTOR DEVICES – MECHANICAL AND CLIMATIC TEST METHODS –

Part 39: Measurement of moisture diffusivity and water solubility in organic materials used for semiconductor components

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity EC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter. 28d1c6d8b807/iec-60749-39-2021
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 60749-39 has been prepared by IEC technical committee 47: Semiconductor devices. It is an International Standard.

This second edition, based on JEDEC document JESD22-A120B, cancels and replaces the first edition published in 2006. It is used with permission of the copyright holder, JEDEC Solid State Technology Association. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

a) updated procedure for "dry weight" determination.

The text of this International Standard is based on the following documents:

Draft	Report on voting
47/2652/CDV	47/2725/RVC

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/standardsdev/publications.

A list of all the parts of the IEC 60749 series, under the general title *Semiconductor devices* – *Mechanical and climatic test methods*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

iTeh STANDARD PREVIEW

- reconfirmed,
- withdrawn,
 - replaced by a revised edition standards.iteh.ai)
- amended.

•

<u>IEC 60749-39:2021</u> https://standards.iteh.ai/catalog/standards/sist/2aff6b5a-3140-4d55-8bbe-28d1c6d8b807/iec-60749-39-2021

SEMICONDUCTOR DEVICES – MECHANICAL AND CLIMATIC TEST METHODS –

Part 39: Measurement of moisture diffusivity and water solubility in organic materials used for semiconductor components

1 Scope

This part of IEC 60749 details the procedures for the measurement of the characteristic properties of moisture diffusivity and water solubility in organic materials used in the packaging of semiconductor components.

These two material properties are important parameters for the effective reliability performance of plastic packaged semiconductors after exposure to moisture and being subjected to high-temperature solder reflow.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60749-20, Semiconductor devices IEC Mechanical and climatic test methods – Part 20: Resistance of plastic encapsulated SMDs to the combined effect of moisture and soldering heat 28d1c6d8b807/iec-60749-39-2021

3 Terms and definitions

No terms and definitions are listed in this document.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

4 Apparatus

4.1 Analytical balance capable of a resolution of either 0,000 01 g or 0,001 % of sample mass.

4.2 High-temperature oven capable of maintaining uniform temperatures from 100 °C to $250 \degree C \pm 2 \degree C$.

4.3 Temperature/humidity chamber(s) capable of maintaining temperatures in a range from 30 °C to 85 °C and relative humidities (H_R) in a range from 60 % H_R to 85 % H_R . Within the chamber working area, temperature tolerance shall be ±2 °C and the H_R tolerance shall be ±3 % H_R .

4.4 Perforated stainless steel trays or stainless steel wire mesh baskets used for holding samples and for placement into ovens.

4.5 Large aluminium plate or disk used for heat sink capability.

4.6 Desiccator for holding dry samples.

5 Samples

Samples of mould compound shall be flat parallel-sided discs or coupons. The linear dimensions shall be accurately measured to within $\pm 0,02$ mm.

To approximate one-dimensional diffusion behaviour with edge effects limited to less than 5 % of the total diffusional moisture mass uptake, the free surface area in the thickness dimension shall be less than 5 % of the flat-sided free surface area of the sample. For a disc of radius, r, and thickness, h, the following relation shall be met:

$$h < 0.05r \tag{1}$$

for a coupon of length, *L*, and width, *W*,
iTeh STANDARD PREVIEW
(standa
$$0.05(WL)$$
 eh.ai) (2)

IEC 60749-39:2021

https://standards.iteh.ai/catalog/standards/sist/2aff6b5a-3140-4d55-8bbe-

Recommended sample thickness should be in the range from 0,3 mm to 1,0 mm. The maximum sample thickness should not exceed 1,0 mm, because the time to achieve moisture saturation at temperatures below 60 °C will be excessively long for compounds with slow diffusivity.

The moisture absorption parameters used in this standard can be obtained from the material suppliers (such as the resin supplier).

6 Procedure

6.1 Sample preparation

6.1.1 Process and cure the samples using recommended processing conditions in accordance with the manufacturer's specification.

6.1.2 To obtain the appropriate sample thickness as given by Formulae (1) or (2), samples can be sectioned and finely polished from larger specimens. Near parallel-sided flatness shall be maintained for samples prepared in this manner.

The prepared samples should be inspected for voids, both internal and surface, using acoustic microscopy or x-ray. The ideal samples should be nearly void-free.

6.2 Absorption measurements below 100 °C

6.2.1 Measure the linear dimensions of the prepared sample to the nearest $\pm 0,02$ mm. Record the sample thickness, *h*, and calculate the sample volume, *V*, using the appropriate geometric relationship based on the sample shape.

- 6 -

NOTE Calculating the volume by measuring the linear dimensions is never accurate. The error is smaller when the sample is big. One accurate way of determining the volume is to use Archimedes's principle, which is to measure the sample weight in air and immersed in a liquid with known density (ethyl alcohol, IPA, etc.). In this way, the volume of a sample with irregular shape can also be determined.

6.2.2 The dry weight of the sample shall be determined, in accordance with IEC 60749-20, firstly by baking the sample for 24 h at 125 +5/-0 °C and continuing to bake and weigh the sample every 12 hours until no further weight loss is observed to ensure that the sample(s) are dry. The dry weight is determined when no further weight loss is observed, less than 0,002 % difference, after two consecutive measurements with a minimum baking interval of 12 h. Within 30 minutes after removal from the oven, weigh the sample(s) using the analytical balance equipment described in 4.1 and determine the dry weight in accordance with 6.2.4.

In accordance with IEC 60749-20, small sample(s) (less than 1,5 mm total height), devices should be weighed within 30 minutes after removal from oven.

6.2.3 Remove the sample from the bake oven and immediately cool by placing in contact with the heat sink of 4.5.

If more than one sample is to be measured, the samples and heat sink should be placed into a desiccator to limit moisture uptake during the mass measurements.

6.2.4 Weigh the sample using the balance described in 4.1 and record the mass as $M_{\text{Comp,drv},1}$.

Read points: At the **desired read point**; **remove the sample(s)** from the bake oven. Within 30 minutes after removal of the sample(s) from the bake oven, remove the sample(s) from the container and determine their **weight using the sanalytical ba**lance equipment in 4.1. Within 30 minutes after weighing the samples, place them in a clean, dry, shallow container so that the sample bodies do not touch each other, Return the sample(s) to the bake oven for the desired time. Continue until the sample(s) have lost all their moisture as determined by the dry weight in 6.2.2.

6.2.5 Place the sample(s) into a stainless steel holder and transfer to a temperature/humidity chamber stabilized at a pre-set temperature and humidity.

The sample should be transferred into a stainless-steel holder that has been preheated and stabilized to the set chamber temperature.

6.2.6 At accumulative times, remove the sample from the temperature/humidity chamber, cool and measure the sample mass in accordance with 6.2.4. Record the mass as $M_{\text{Comp.wet.t}}$.

6.2.7 Read Points: The X-axis (time) read points, in accordance with IEC 60749-20, are selected for plotting the absorption curve. For the early readings, points should be relatively short (24 h or less) because the curve will have a steep initial slope. Later readings can be spread out further (10 days or more) as the curve becomes asymptotic. The Y-axis (weight gain) should start with "0" and increase to the saturated weight gain. Most sample(s) will reach saturation between 0,3 % and 0,4 % when stored at 85 $^{\circ}$ C/85 % RH. Devices shall be kept at room ambient between removal from the oven or chamber and weighing and subsequent reinsertion into the oven or chamber.

Ensure that no condensed moisture from the chamber walls comes into contact with a sample during removal from the temperature/humidity chamber. If condensed water should contact a sample, immediately dry the sample using nitrogen or dry air. The sample should then be returned to the chamber for re-equilibration and another data point taken at a later time.

The sample weight measurement shall be made within a few minutes after removal of the sample from the temperature/humidity chamber. Time delays longer than 5 minutes after removal from the temperature/humidity chamber could affect the sample weight measurements.

Within 30 minutes after weighing the samples, place them in a clean, dry, shallow container so that the sample bodies do not touch each other. Return the sample(s) to the temperature/humidity chamber for the desired time.

6.2.8 Place the sample back into the temperature/humidity chamber and continue mass measurements until either of the following conditions are met:

- a) additional weight gain after a 24 h period is less than 0,002 % from the previous measurement;
- b) a plot of the weight gain versus time shows a linearly increasing weight gain after an initial decreasing change in mass with time (dM/dt), as depicted in Figure 1.

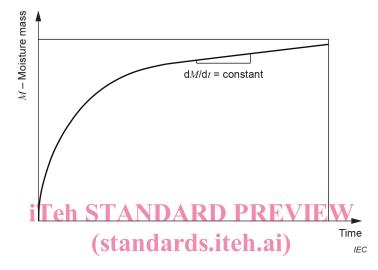


Figure 1 – Example of linearly increasing mass gain

https://standards.iteh.ai/catalog/standards/sist/2aff6b5a-3140-4d55-8bbe-

- **6.2.9** Record the final wet mass of the sample as $M_{\text{Comp.wet.f.}}^{9-2021}$
- **6.2.10** Bake the sample again at 125 °C until dry as determined by 6.2.2.
- **6.2.11** Record the second final dry mass as $M_{\text{Comp,dry,2}}$.
- **6.2.12** Record the saturated moisture mass as, $M_{\text{Sat}} = M_{\text{Comp,wet,f}} M_{\text{Comp,dry,2}}$.

NOTE An alternative method to estimate the reversible saturated moisture mass can be determined by an intercept approach as shown in Figure 2. Using this method the intercept point between the weight gain curve and a linear extrapolation of the linear varying portion of the weight gain curve can be used to estimate the reversible Fickian moisture weight gain response.

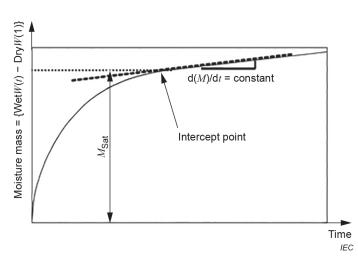


Figure 2 – Alternative intercept method to estimate the reversible Fickian moisture mass

6.3 Solubility and diffusivity calculation

6.3.1 Calculate the solubility at the given temperature and humidity by using:

$$C_{\text{sat}}(T, \mathcal{H}_{\mathsf{R}}) \underbrace{\overset{M_{\text{Comp,wet,f}}}{\overset{M_{\text{Comp,dry,2}}}{\overset{W_{\text{sat}}(T, \mathcal{H}_{\mathsf{R}})}{\overset{V}{\overset{V}}}}_{V} (3)$$
(3)

whereIEC 60749-39:2021
$$C_{sat}(T,H_R)$$
is the moisture solubility at temperature T and $^{2}H_R^{(0)}$ (in mg cm^{-3});
 $^{28d1c6d8b807/icc-60749-39-2021}$ $M_{Comp,wet,f}$ is the final wet sample mass (in mg); $M_{Comp,dry,2}$ is the final dry sample mass after the second bake (in mg); V is the sample volume (in cm^3); $M_{sat}(T,H_R)$ is the reversible saturated moisture content at temperature T and H_R (in mg).**6.3.2**Plot mass gain curve versus time using change in mass as $M(t) - M_{Comp,dry,1}$

- **6.3.3** Using the plotted curve, calculate the moisture diffusivity from

$$D(T) = \frac{0,049 \ 19 \ h^2}{t_{0,5}} \tag{4}$$

where

D(T) is the diffusivity at temperature T (in mm² s⁻¹);

H is the sample thickness (in mm);

- $t_{0,5}$ is the absorption half-time defined as the time at which the absorbed mass of moisture is equal to one-half the saturated mass, for example, $M_t/M_{sat} = 0.5$;
- $M_{\rm t}$ is the mass of moisture at time *t*.

- 9 -

NOTE Formula (4) is recognized as an approximation to the analytical closed form solution, however, it will provide an accurate approximation to less than a few percent error. An alternate method for determining D(T) is to use a best fit curve fitting approach of the experimental weight gain data. The following solution for rectangular or square samples can be used:

$$\frac{M_{\rm t}}{M_{\rm sat}} = 1 - \frac{512}{\pi^6} \sum_{l=0}^{\infty} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{\exp(-D \ t \ L_{eqv})}{(2l+1)^2 \ (2m+1)^2 (2n+1)^2}$$
(5)

where
$$L_{eqv} = \left(\left\{ \frac{(2l+1)}{x_0} \right\}^2 + \left\{ \frac{(2m+1)}{y_0} \right\}^2 + \left\{ \frac{(2n+1)}{z_0} \right\}^2 \right)$$

Here, x_0 , y_0 , and z_0 are the width, length, and thickness of the sample, respectively. *l*, *m* and *n* represent integers relating to calculation of diffusion/concentration steps solved by iterative calculations in each principal direction. The value of D(T) determined by a curve fitting technique using Formula (5) should be compared to the value determined by Formula (4) as a reference check.

- 10 -

6.3.4 Repeat the absorption measurements 6.2 to 6.3.3 using different temperature and humidity conditions. The following environmental conditions shall be used: 30 °C/60 % $H_{\rm R}$, 60 °C/60 % $H_{\rm R}$, and 85 °C/60 % $H_{\rm R}$.

6.4 Desorption measurements above 100 °C

6.4.1 Place the sample in a chamber maintained at 85 °C/60 % H_R or 85 °C/85 % H_R for 168 h or until M_{sat} is achieved as determined by a calculation using a previously determined diffusivity at 85 °C.

iTeh STANDARD PREVIEW

6.4.2 Remove the sample from the temperature/humidity chamber, cool in accordance with 6.2.3 and record the saturated sample weight, M_{sat} .

6.4.3 Immediately transfer the sample⁰⁷ into⁹ a² stainless-steel holder that has been preheated and stabilized at the set bake temperature and place⁰ in a bake oven stabilized at a temperature greater than 100 °C.^{28d1c6d8b807/icc-60749-39-2021}

6.4.4 Remove the sample after a recorded elapsed period of time, immediately cool in accordance with 6.2.3 and measure the sample weight in accordance with 6.2.4.

6.4.5 Repeat steps 6.4.3 and 6.4.4 until the sample is dry.

Appropriate times for recording weight losses can be determined by using a first-order extrapolation of the value for the diffusivity by using an Arrhenius fit (see Clause 7 and Clause 8) of the absorption diffusivities determined in 6.3.3.

Estimated weight losses can be assessed by using the following equation:

$$\frac{M_{\rm t}}{M_{\rm sat}} = 1 - \frac{8}{\pi^2} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} \exp\left\{-\frac{(2n+1)^2 \pi^2 D t}{h^2}\right\}$$
(6)

where

D is the diffusivity;

t is the time.

6.4.6 Calculate D(T) using Formula (4), where $t_{0,5}$ is now defined as the time at which the desorbed mass of moisture is equal to one-half of the saturated mass.