

Edition 2.0 2024-10

INTERNATIONAL STANDARD

Multimedia systems and equipment – Colour measurement and management – Part 12-2: Simple metadata format for identification of colour gamut

Document Preview

IEC 61966-12-2:2024

https://standards.iteh.ai/catalog/standards/iec/6a8a872c-8826-496b-a571-aec2021c1bc1/iec-61966-12-2-2024

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2024 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Secretariat 3, rue de Varembé CH-1211 Geneva 20 Switzerland

Tel.: +41 22 919 02 11

info@iec.ch www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished
Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

IEC Products & Services Portal - products.iec.ch

Discover our powerful search engine and read freely all the publications previews, graphical symbols and the glossary. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 500 terminological entries in English and French, with equivalent terms in 25 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

Edition 2.0 2024-10

INTERNATIONAL STANDARD

Multimedia systems and equipment – Colour measurement and management – Part 12-2: Simple metadata format for identification of colour gamut

Document Preview

IEC 61966-12-2:2024

https://standards.iteh.ai/catalog/standards/iec/6a8a872c-8826-496b-a571-aec2021c1bc1/iec-61966-12-2-2024

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 17.180.20; 33.160.40

ISBN 978-2-8322-9821-3

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FOREWORD	3
INTRODUCTION	5
1 Scope	6
2 Normative references	6
3 Terms and definitions	6
4 Simple description of gamut	7
5 Relationship with IEC 61966-12-1	9
Annex A (informative) Conversion from IEC 61966-12-2 to IEC 61966-12-1 simple profile	11
Annex B (informative) Example of simple metadata format and conversion to IEC 61966-12-1 simple profile	13
Annex C (informative) Handling HDR content	18
C.1 General	18
C.2 Relationship with other HDR related standards	18
Bibliography	20
Figure 1 – The colour gamut for display types comprising three primary additive colours	9
Figure 2 – IEC 61966-12-1 full and medium profiles	
Figure 3 – IEC 61966-12-1 simple profile and IEC 61966-12-2	
Table 1 – Simple metadata format for identification of colour gamut	8
Table 2 – Differences of IEC 61966-12-1 simple profile and IEC 61966-12-2	
Table B.1 – Colour gamut for IEC 61966-2-5 opRGB	
Table B.2 – Encoded simple metadata format	-12 14
Table B.3 – Conversion result to CIE-XYZ values for five colour vertices	
Table B.4 – Example for the header	
Table B.5 – Example for the header of description of gamut geometry	
Table B.6 – Example of definition of vertices	
Table B.7 – Example of encoded colour space coordinates for vertices	
Table C.1 – P3D65x1000n0005 in ITU-R H Supl.19	
Table C.2 — Metadata example when distributing content whose colour gamut is DCI-P3	10

INTERNATIONAL ELECTROTECHNICAL COMMISSION

MULTIMEDIA SYSTEMS AND EQUIPMENT – COLOUR MEASUREMENT AND MANAGEMENT –

Part 12-2: Simple metadata format for identification of colour gamut

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 61966-12-2 has been prepared by technical area 2: Colour measurement and management, of IEC technical committee 100: Audio, video and multimedia systems and equipment. It is an International Standard.

This second edition cancels and replaces the first edition published in 2014. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) the number of bits of metadata format has been extended in Clause 4;
- b) Annex C has been added for handling HDR content.

The text of this International Standard is based on the following documents:

Draft	Report on voting				
100/3847/CDV	100/4109/RVC				

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

A list of all parts of the IEC 61966 series, published under the general title *Multimedia systems* and equipment – Colour measurement and management, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn, or
- revised.

iTeh Standards

Document Preview

IEC 61966-12-2:2024

https://standards.iteh.ai/catalog/standards/iec/6a8a872c-8826-496b-a571-aec2021c1bc1/iec-61966-12-2-2024

INTRODUCTION

New technologies in capturing and displaying wide-gamut colour images enable a new market of wide-gamut video colour content creation. Recent video standards for wide gamut colour space encoding such as ITU-R BT.2100 (HDR), ITU-R BT.2020 (UHDTV) and IEC 61966-2-4 (xvYCC) were developed in order to be able to distribute content with a colour gamut that is extended with respect to classical colour gamuts such as those defined by standards ITU-R BT.601 (standard-definition television) and ITU-R BT.709 (high-definition television). With the increasing popularity of wide gamut and high dynamic range content and displays, the variety of colour gamuts of displays is expected to increase. This issue can be an obstacle to adoption of wide-gamut video colour content in professional content creation since the compatibility of the content to the employed displays, as well as the compatibility among different displays, is not ensured. The term "display" includes here any video colour reproduction equipment, such as direct view displays and projectors. Thanks to improvements in technology, the variety of colour gamuts and colour reproduction capacities of displays are increasing while the colour gamut and the colour encoding rules of existing colour space encoding standards are fixed.

To address this issue, IEC 61966-12-1 (*Metadata for identification of colour gamut (Gamut ID)*) specifies a colour gamut metadata scheme for video systems including information for colour reproduction. This metadata can apply to video content or displays. More specifically, improvements can be achieved if the wide-gamut colour content is created with the knowledge of the display colour gamut and if the colour reproduction in the display is done with the knowledge of the colour gamut of the pictorial content.

IEC 61966-12-1 has the capability to describe arbitrary 3D colour gamuts in a given colour space and include the full/medium profile for professional use and the simple profile for consumer use with easier product implementation. This approach is effective, but some ambiguities can occur in practical use, for example if typical CE devices are able to decode the simple profile only owing to CPU and software limitations.

In this case, even if a sender device and a receiver device are based on IEC 61966-12-1:

- a) the receiver device cannot handle the Gamut ID of incoming content, if the sender device sends only a full or a medium profile; 8872c-8826-496b-8571-8622021c1bc1/iec-61966-12-
- b) the sender device should convert a full profile to a simple one for CE devices if the receiver can receive the simple profile only, but the conversion is not possible for all the cases.

Therefore, a simple Gamut ID profile standard based on this document has been developed to address this problem.

This second edition extends the number of bits of "back level ratio" in the metadata format to accommodate the wider dynamic range content and displays.

MULTIMEDIA SYSTEMS AND EQUIPMENT – COLOUR MEASUREMENT AND MANAGEMENT –

Part 12-2: Simple metadata format for identification of colour gamut

1 Scope

This part of IEC 61966-12 specifies the colour gamut metadata format for video systems intended for use in CE (consumer electronics) devices. The metadata specified in this part of IEC 61966-12 is limited to the gamut description for display types comprising the three primary additive colours, whose white and black points have the same chromaticity. It is fundamentally based on the conventional VESA-EDID format.

When associated with content, the simple metadata format defines the gamut for which the content was created. It can be used by the display for controlled colour reproduction even if the display's colour gamut is different from that of the content.

When associated with a display, the simple metadata format defines the display colour gamut. It can be used during content creation to enable improved colour reproduction.

This document provides the simplest, but unambiguous solution for typical CE devices that are based on colour gamut information communication.

2 Normative references ocument Preview

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60050-845, International Electrotechnical Vocabulary – Part 845: Lighting

IEC 61966-12-1, Multimedia systems and equipment – Colour measurement and management – Part 12-1: Metadata for identification of colour gamut (Gamut ID)

ISO 15076-1, Image technology colour management – Architecture, profile format and data structure – Part 1: Based on ICC.2010

3 Terms and definitions

For the purposes of this document, the terms and definitions given in IEC 60050-845 and the following apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- IEC Electropedia: available at https://www.electropedia.org/
- ISO Online browsing platform: available at https://www.iso.org/obp

3.1

content

set of video signals in production, post-production or consumption

3.2

colour gamut

range of colours achievable on a given colour reproduction medium (or present in an image of that medium) under a given set of viewing conditions

Note 1 to entry: It is a volume in colour space.

3.3

gamut mapping

mapping of the colour-space coordinates of the elements of a source image to colour-space coordinates of the elements of a reproduction to compensate for differences in the source and output medium colour gamut capability

4 Simple description of gamut

The three primary additive colours gamut can be specified by four combinations of CIE-xy chromaticity values of red, green, blue and white. The gamut is assumed to have the characteristic that combining equal amounts of the three primaries (red, green, blue) produces the chromaticity of white. These values can be encoded according to the gamut CIE-xy chromaticity values used in Vesa Enhanced Extended Display Identification Data Standard (Defines EDID Structure Version 1, Revision 4). The description includes eight values (CIE-xy chromaticity values for each red, green, blue and white) with 10-bit fixed point form in the range of 0,0 to 1,0. These display primary and the white point CIE-xy chromaticity values should be measured in such a way as to minimize the contribution from the display black. In addition to VESA-EDID format, the information of White Absolute Luminance (WAL) and Black Level Ratio (BLR) are included. WAL value is defined in cd/m² and denoted as $Y_{\rm W}$, and encoded into 16-bit unsigned integer form. BLR is defined as Equation (1), and encoded into 32-bit fixed point form in the range of 0,0 to 1,0.

Document Preview

$$BLR = (Y_K / Y_W)$$
 (1)

IEC 61966-12-2:2024

https://standards.iteh.ai/catalog/standards/jec/6a8a872c-8826-496b-a571-aec2021c1bc1/jec-61966-12-2-2024

where

 $Y_{\rm K}$ is the luminance of black shown in Figure 1;

 Y_{W} is the luminance of white shown in Figure 1.

Table 1 shows the total metadata which includes the VESA-EDID compatible CIE-xy chromaticity values of red, green, blue and white and BLR and WAL value. The total size of this format is 16 B.

Refer to Annex C for information about handling HDR content.

Table 1 – Simple metadata format for identification of colour gamut

Byte# hex	Size B	Colour characteristic	Description							
			7	6	5	4	3	2	1	0
		Red_x, Red_y,								
00	1	Green_x, Green_y	Rx1	Rx0	Ry1	Ry0	Gx1	Gx0	Gy1	Gy0
		Bits1 & bits0								
		Blue_x, Blue_y,								
01	1	White_x, White_y bits1 & bits0	Bx1	Bx0	By1	By0	Wx1	Wx0	Wy1	Wy1
02	1	Red_x bit9 - bit2	Rx9	Rx8	Rx7	Rx6	Rx5	Rx4	Rx3	Rx2
03	1	Red_y bit9 – bit2	Ry9	Ry8	Ry7	Ry6	Ry5	Ry4	Ry3	Ry2
04	1	Green_x bit9 - bit2	Gx9	Gx8	Gx7	Gx6	Gx5	Gx4	Gx3	Gx2
05	1	Green_y bit9 - bit2	Gy9	Gy8	Gy7	Gy6	Gy5	Gy4	Gy3	Gy2
06	1	Blue_x bit9 – bit2	Bx9	Bx8	Bx7	Bx6	Bx5	Bx4	Bx3	Bx2
07	1	Blue_y bit9 – bit2	Ву9	Ву8	Ву7	By6	Ву5	By4	Ву3	By2
08	1	White_x bit9 - bit2	Wx9	Wx8	Wx7	Wx6	Wx5	Wx4	Wx3	Wx2
09	1	White_y bit9 - bit2	Wy9	Wy8	Wy7	Wy6	Wy5	Wy4	Wy3	Wy2
		White absolute luminance		cum	ent]	Prev	iew			
0A	1	Bit15 – bit8	WAL15	WAL14	WAL13	WAL12	WAL11	WAL10	WAL9	WAL8
		(16 bit unsigned		IEC 6	1966-12-	2:2024				
anda	rde in	Integer)	tandards	iec/6a8a	872r-88	26-496b-	9571_ 9er	2021c1t	c1/iec-6	1966-12-
	1 US.11	White absolute luminance		100/0404	0720 00.	20 4700	a3/1-a60	2021010	01/100 0	1700 12
0B	1	Bit7 – bit0	WAL7	WAL6	WAL5	WAL4	WAL3	WAL2	WAL1	WAL0
		(16 bit unsigned								
		Integer)								
0C	1	Black level ratio Bit31 – bit24 (32-bit fixed point)	BLR31	BLR30	BLR29	BLR28	BLR27	BLR26	BLR25	BLR24
		Black level ratio								
0D	1	Bit23 – bit16 (32-bit fixed point)	BLR23	BLR22	BLR21	BLR20	BLR19	BLR18	BLR17	BLR16
		Black level ratio								
0E	1	Bit15 – bit8	BLR15	BLR14	BLR13	BLR12	BLR11	BLR10	BLR9	BLR8
		(32-bit fixed point)	DERTO	DLIX14	DLKIS	DLIXIZ	DLIXII	DLKIU	DLKS	DLNO
0F	1	Black level ratio Bit7 – bit0 (32-	BLR7	BLR6	BLR5	BLR4	BLR3	BLR2	BLR1	BLR0

NOTE The metadata format in this document has backward compatibility with IEC 61966-12-2:2014 because addresses "0C" and "0D" indicate same bits.

https: