

Edition 2.0 2023-05

INTERNATIONAL STANDARD

Electric cables – Calculation of the current rating – Part 1-2: Current rating equations (100 % load factor) and calculations of losses – Sheath eddy current loss factors for two circuits in flat formation

EC 60287-1-2:2023

https://standards.iteh.ai/catalog/standards/sist/e3467da0-713b-4ba8-b43e-353da94b9fd0/iec-60287-1-2-2023

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2023 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Secretariat 3, rue de Varembé CH-1211 Geneva 20 Switzerland

Tel.: +41 22 919 02 11 info@iec.ch www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

IEC Products & Services Portal - products.iec.ch

Discover our powerful search engine and read freely all the publications previews. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 300 terminological entries in English and French, with equivalent terms in 19 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

Edition 2.0 2023-05

INTERNATIONAL STANDARD

Electric cables – Calculation of the current rating – Part 1-2: Current rating equations (100 % load factor) and calculations of losses – Sheath eddy current loss factors for two circuits in flat formation

<u>EC 60287-1-2:2023</u>

https://standards.iteh.ai/catalog/standards/sist/e3467da0-713b-4ba8-b43e-353da94b9fd0/iec-60287-1-2-2023

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 29.060.20

ISBN 978-2-8322-6972-5

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FOREWORD	3
1 Scope	5
2 Normative references	5
3 Terms, definitions and symbols	5
3.1 Terms and definitions	5
3.2 Symbols	6
4 Description of method	7
4.1 General	7
4.2 Outline of method	7
4.3 Criteria for use of formulae and coefficients	8
5 Formulae for sheath loss factors for high-resistance sheaths in a single circuit, λ_{0s}	8
6 Calculation of the coefficients C_{H} , C_{N} and C_{J}	9
6.1 Allocation of coefficients to each cable, time sequence and phase identification	9
6.2 Calculation of coefficients C_{H} (1, 2 and 3), Table 1	. 10
6.3 Calculation of coefficients C_N (1, 2, 3, 4, 5 and 6), Table 2	.11
6.4 Calculation of coefficients C_J (1, 2, 3, 4, 5 and 6), Table 3 to Table 11	.11
6.5 Calculation of coefficients G_s and g_s	. 13
7 Notes on transposition of cables	. 14
8 Worked examples of calculation of eddy current losses	. 14
8.1 Overview	. 14
8.2 Example 1	.14
8.3 Example 2	. 16
Bibliography	. 30
Figure 1 – Cable configuration	8
Table 1 – C_{H} coefficients	. 19
Table 2 – C_N coefficients	.20
Table 3 – C _J coefficients	.21
Table 4 – <i>C</i> _J coefficients	. 22
Table 5 – C _J coefficients	.23
Table 6 – <i>C</i> J coefficients	.24
Table 7 – CJ coefficients	.25
Table 8 – CJ coefficients	.26
Table 9 – <i>C</i> J coefficients	. 27
Table 10 – CJ coefficients	. 28
Table 11 – C _J coefficients	.29

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ELECTRIC CABLES – CALCULATION OF THE CURRENT RATING –

Part 1-2: Current rating equations (100 % load factor) and calculation of losses – Sheath eddy current loss factors for two circuits in flat formation

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 60287-1-2 has been prepared by IEC technical committee 20: Electric cables. It is an International Standard.

This second edition cancels and replaces the first edition published in 1993. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

a) the symbols have been harmonized and aligned with the symbols used in the IEC 60287 and IEC 60853 series.

The text of this International Standard is based on the following documents:

Draft	Report on voting		
20/2097/FDIS	20/2104/RVD		

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

A list of all parts in the IEC 60287 series, published under the general title *Electric cables – Calculation of the current rating*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed, Teh STANDARD PREVIEW
- withdrawn,
- replaced by a revised edition, or ndards.iteh.ai)
- amended.

IEC 60287-1-2:2023

https://standards.iteh.ai/catalog/standards/sist/e3467da0-713b-4ba8-b43e-353da94b9fd0/iec-60287-1-2-2023

ELECTRIC CABLES – CALCULATION OF THE CURRENT RATING –

Part 1-2: Current rating equations (100 % load factor) and calculation of losses – Sheath eddy current loss factors for two circuits in flat formation

1 Scope

This part of IEC 60287 provides a method for calculating the eddy current losses in the metallic sheaths of single-core cables arranged as a three-phase double circuit in flat formation. The sheaths are bonded at one point or are cross-bonded so that there are no significant sheath circulating currents. Where metallic sheaths are bonded at both ends there are significant circulating currents which result in a lower current-carrying capacity. A method of calculating circulating current losses for double circuits is provided in IEC 60287-1-3.

The method descibed in this document provides coefficients which are applied as corrections to the loss factors for the sheaths of one isolated three-phase circuit. These corrections are negligible for cables where the parameter *m* is less than approximately 0,1 ($m = \omega/(R_s \cdot 10^7)$), which corresponds to a sheath longitudinal resistance higher than 314 µΩ/m at 50 Hz.

Consequently, the method is used for most sizes of aluminium-sheathed cables, but is not required for lead-sheathed cables unless they are unusually large.

The coefficients are provided in tabular form and have been computed from fundamental formulae for sheath losses, the evaluation of which calls for expertise in computer programming which will possibly not be readily available in general commercial situations. The development of simplified formulae for some of the tabulated coefficients is under consideration.

Losses for cables in a single circuit is covered in IEC 60287-1-1.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60287-1-1:2023, Electric cables – Calculation of the current rating – Part 1-1: Current rating equations (100 % load factor) and calculation of losses – General

3 Terms, definitions and symbols

3.1 Terms and definitions

No terms and definitions are listed in this document.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

3.2	Symbols		
С _{А0} ,	С _{во} , С _{со} , С _{ро}	coefficients used to interpolate for C_{H} and C_{J}	
С _{Н1} ,	С _{Н2} , С _{Н3}	coefficients which correct for sheath resistance, the values obtained relate to cables 1, 2 or 3 in a single circuit	
C _{N1} , C _{N6}	C _{N2} , C _{N3} , C _{N4} , C _{N5} ,	coefficients which introduce the mutual influences between circuits and are therefore dependent on the relative phase sequences of cables 1 to 3 and 4 to 6	
C _{J1} , C _{J6}	C _{J2} , C _{J3} , C _{J4} , C _{J5} ,	coefficients which depend on the cable positions 1 to 3 and 4 to 6 in each circuit	
С _{М0,}	C _{Z0}	coefficients used for calculation of coefficients C_{H}	
C _S , (C _T , C _U , C _V	coefficients used to interpolate for C_{J}	
C_{Y}		coefficient used for calculation of coefficients C_{J}	
$C_{\beta 1}$		coefficient used for calculation of coefficients $G_{ m S}$ and $g_{ m S}$	
$D_{\mathbf{s}}$		external diameter of the metal sheath	(mm)
D _{it}		the diameter of the imaginary cylinder which just touches the inside surface of the troughs of a corrugated sheath	(mm)
D _{oc}		the diameter of the imaginary coaxial cylinder which just touches the crests of a corrugated sheath	(mm)
$G_{\mathbf{s}}$		coefficient which accounts for losses due to eddy currents across the thickness of the sheath due to the current in the conductor	
R _c		alternating current resistance of the conductor at its maximum operating temperature	(Ω/m)
R _s htt		aresistance of the sheath)-713b-4ba8-b43e-353da94b91	(Ω/m)
c ₁		distance between centres of cables in adjoining circuits	(mm)
d		mean diameter of sheath or screen	(mm)
f		system frequency	(Hz)
gs		coefficient which accounts for losses due to eddy currents across the thickness of the sheath, due to currents in adjacent cables	
т		parameter used in calculation of loss factor	
S		distance between centres of cables in the same circuit	(mm)
t _s		thickness of the sheath	(mm)
<i>y</i> ₁		equal to <i>s</i> / <i>c</i> ₁	
Z		equal to $d/2 \cdot s$	
λ_{0s}		sheath loss factor for a high-resistance sheath in a single circuit	
λ _{1s} "		sheath loss factor for a low-resistance sheath in a single circuit	
$^{\lambda}1d''$		sheath loss factor for a low-resistance sheath in a double circuit	
$\rho_{\rm S}$		electrical resistivity of sheath material at operating temperature	(Ω · m)
ω		angular frequency of system ($2\pi f$)	(l/s)

IEC 60287-1-2:2023 © IEC 2023

4 Description of method

4.1 General

The method proceeds in a way similar to that used for single circuits in IEC 60287-1-1. There, formulae for loss factors applicable to sheaths having a longitudinal resistance such that *m* is less than 0,1 ($R_s = 314 \ \mu\Omega/m$ at 50 Hz) are given, together with empirical formulae to calculate the correction coefficient for lower resistance sheaths.

- 7 -

However, for double circuits, accurate empirical formulae covering the complete range of coefficients would contain so many terms that their use would show little or no advantage over the use of precise, tabulated coefficients with interpolation, as necessary. This latter course has the advantage that the accuracy of the loss factors can be closely equal to that of the original calculations and is better than 1 %.

The development of empirical formulae for a limited range of coefficients is under consideration.

In order to explain the method, it is described here in a way appropriate to manual evaluation of the arithmetic. However, because of the appreciable effort required to provide loss factors for six cables, it is to be expected that calculations will usually be effected by means of a computer. Under these circumstances, the decision to use interpolation (as necessary) between tabulated values is fully justified.

However, in many cases, values of the relevant parameters will be such that interpolation is unnecessary or can be accomplished with sufficient accuracy by inspection.

andards iteh ai

Corrections to cover the effect of eddy currents circulating within the thickness of a sheath are derived with the use of the same formulae as those used in IEC 60287-1-1.

EC 60287-1-2:2023

 $\textbf{4.2}_{ntrp} \textbf{Outline of method}_{atalog/standards/sist/e3467 da0-713b-4ba8-b43e-353 da94b9 fd0/iec-2010 da94b9 da94b$

The loss factor for the sheath of a given cable in a double-circuit flat formation (see Figure 1) is evaluated as follows:

$$\lambda_{\mathsf{1d}}'' = \frac{R_{\mathsf{s}}}{R_{\mathsf{c}}} \Big[\lambda_{\mathsf{0s}} \cdot C_{\mathsf{H}} (\mathsf{1 to 3}) \cdot C_{\mathsf{N}} (\mathsf{1 to 6}) \cdot C_{\mathsf{J}} (\mathsf{1 to 6}) \cdot g_{\mathsf{s}} + G_{\mathsf{s}} \Big]$$

The tasks performed by coefficients C_N and C_J are not directly related to any physical function but have been selected to simplify the tabulation. The nomenclature is arbitrary.

Values of $C_{\rm H}$, $C_{\rm N}$ and $C_{\rm J}$ are obtained from Table 1 to Table 11 and are chosen according to the following parameters together with the position of the cable and the phase sequence of the currents in the conductors.

$$m = \frac{\omega}{R_{\rm s}} \times 10^{-7}$$
$$\omega = 2\pi f$$

$$z = \frac{d}{2s}$$

$$y_1 = \frac{s}{c_1}$$

where

 c_1 is the distance between the centres of cables in adjoining circuits (see Figure 1) (mm).

Figure 1 – Cable configuration

NOTE The factors for a single circuit having low-resistance sheaths can be obtained by using the coefficients $C_{\rm H}$ (1, 2 and 3) only, as follows:

$$\lambda_{1s}'' = \frac{R_s}{R_c} \Big[\lambda_{0s} \cdot C_{\mathsf{H}} (1 \text{ to } 3) \cdot g_s + G_s \Big]$$

4.3 Criteria for use of formulae and coefficients

For sheaths for which the value of *m* is less than 0,1, which includes most lead-sheathed cables, it can be assumed that the coefficients $C_{\rm H}$, $C_{\rm N}$, $C_{\rm J}$ and $g_{\rm s}$ are unity and $G_{\rm s}$ is zero. In such circumstances, $\lambda_{0\rm s}$ can be used for twin circuits without correction.

<u>IEC 60287-1-2:2023</u>

When the value of *m* is equal to 0,1 or greater, which is generally the case for all but the smaller aluminium-sheathed cables, values for $C_{\rm H}$, $C_{\rm N}$, $C_{\rm J}$ and $g_{\rm s}$ shall be calculated. The coefficient $G_{\rm s}$ is important only when the value of *m* is 1,0 or higher.

5 Formulae for sheath loss factors for high-resistance sheaths in a single circuit, λ_{0s}

The sheath loss factor λ_{0s} is given by

$$\lambda_{0s} = C_{C0} \frac{m^2}{\left(1 + m^2\right)} \left[\frac{d}{2s}\right]^2$$

For three single-core cables in flat formation, the coefficient C_{C0} is given by:

Cable	Coefficient C_{C0}
Centre cable	6
Outer cables	1,5

- 8 -

- 9 -

6 Calculation of the coefficients $C_{\rm H}$, $C_{\rm N}$ and $C_{\rm J}$

6.1 Allocation of coefficients to each cable, time sequence and phase identification

It is important to note the way in which the coefficients $C_{\rm H}$, $C_{\rm N}$ and $C_{\rm J}$ are dependent on the time sequence of the currents and the physical position of the conductors.

The cables shall be numbered according to Figure 1.

The coefficients C_{H1} , C_{H2} and C_{H3} of Table 1 are allocated on a basis of time sequence associated with the positions of the cables, so that the following single-circuit arrangements have the same time sequence:

Cable number	1	2	3
Sequence	R	S	Т
Or	S	Т	R
Or	Т	R	S
With coefficients	C_{H1}	C _{H2}	C_{H3}

In the above example, cable 1 is always the outer conductor on a leading phase and takes coefficient C_{H1} . Cable 3 is the outer conductor on a lagging phase and takes coefficient C_{H3} .

It will be seen that, for these cases, the phase identification implied by the letters R, S and T is not important, it is only the time sequence which is of significance.

In double circuits, if either circuit has a reversed sequence, the values of $C_{\rm H}$ shall be allocated to the cables in the reverse order. The allocation of coefficient $C_{\rm H}$ is dependent on the time sequence within each circuit. σ /standards/sist/e3467da0-713b-4ba8-b43e-353da94b9[d0/iec-

87-1-2-201

In a double-circuit configuration, the phase identification implied by the symbols is significant to the extent that the phase identification in relation to the cable position in one circuit shall be either the same as, in the forward sequence, or a mirror image of, in the reverse sequence, that in the other.

Two sets of coefficients C_{N1} to C_{N6} are given in Table 2 corresponding to the forward and reverse sequences. If the cable positions are labelled sequentially and the phase identification rules are adhered to, the coefficients are allocated on the same basis as coefficient $C_{\rm H}$. Note that the values for cables 4, 5 and 6 in the reversed sequence are a reflection of the values for cables 1, 2 and 3.

The number of input parameters involved for the coefficients C_{J1} to C_{J6} makes it desirable to use several tables. Table 3 to Table 8 are for each cable for the forward sequence installation. For the reverse sequence, Table 9 to Table 11 are provided and the coefficients for cables 1 to 3 are also used for cables 6 to 4, in that order. The allocation is on the same lines as those for coefficient C_{N} .

The following tables give examples of four common cases, where letters R, S, T are used for convenience and are equivalent to other well-known sets of symbols to denote time sequence and phase identification, such as L1, L2, L3; a, b, c; R, Y, B.

a)	Forward sequen	ce						
	Cable number	1	2	3	4	5	6	
	Sequence	R	S	Т	R	S	Т	
	Allocation C _H	C_{H1}	C_{H2}	C_{H3}	C_{H1}	C_{H2}	C_{H3}	Table 1
	Allocation $C_{\rm N}$	C_{N1}	C _{N2}	С _{N3}	C_{N4}	C_{N5}	$C_{\sf N6}$	Table 2, forward
	Allocation C _J	C_{J1}	C_{J2}	C_{J3}	C_{J4}	C_{J5}	C_{J6}	Table 3 to Table 8, forward
b)	Forward sequen	се						
	Cable number	1	2	3	4	5	6	
	Sequence	Т	S	R	Т	S	R	
	Allocation C _H	C_{H3}	C_{H2}	C_{H1}	C_{H3}	C_{H2}	C_{H1}	Table 1
	Allocation C _N	$C_{\sf N6}$	C_{N5}	C_{N4}	С _{N3}	C _{N2}	C_{N1}	Table 2, forward
	Allocation $C_{\rm J}$	C_{J6}	C_{J5}	C_{J4}	C_{J3}	C_{J2}	C_{J1}	Table 3 to Table 8, forward
c)	Reverse sequen	ce						
	Cable number	1	2	3	4	5	6	
	Sequence	R	S	Т	Т	S	R	
	Allocation C _H	C_{H1}	C_{H2}	C_{H3}	C_{H3}	C_{H2}	C_{H1}	Table 1
	Allocation C _N	C_{N1}	C_{N2}	C_{N2}	C_{N4}	C _{N5}	C _{N6}	Table 2, forward
	Allocation $C_{\rm J}$	C_{J1}	C_{J2}	C_{J3}	C _{J4}	C _{J5}	C _{J6}	Table 9 to Table 11, forward
d)	Reverse sequen	ce						
	Cable number	1	2	3	4	5	6	
	Sequence	Т	S	R	R	S ⁷⁻	1 <u>7</u> 2:20	
	Allocation C _H	C_{H1}	C _{H2}	C _{H3}	C _{H3}	C _{H2}	C_{H1}	Table 1 ^{228-b43e-353da94b9fd0}
	Allocation C _N	$C_{\sf N6}$	C_{N5}	C_{N4}	C_{N3}	C_{N2}	C_{N1}	Table 2, forward
	Allocation $C_{\rm J}$	C_{J6}	C_{J5}	C_{J4}	C_{J3}	C_{J2}	C_{J1}	Table 9 to Table 11, forward

- 10 -

6.2 Calculation of coefficients $C_{\rm H}$ (1, 2 and 3), Table 1

Each coefficient $C_{\rm H}$ is obtained from Table 1 using the parameters *m* and *z* as well as the position of each cable (see 6.1).

When values of m and z involve interpolation between values in Table 1, the following procedure should be used where interpolation by inspection is not desired.

From the relevant part of Table 1, values for C_{H} (a, b, c, d) are obtained as shown in the following diagram:

	<i>z</i> ₀	Ζ	^z 1
m ₀	C_{Ha}		C _{Hc}
т		C _H	
<i>m</i> ₁	C_{Hb}		C_{Hd}

where m_0 , m_1 , z_0 and z_1 are tabulated values smaller and larger than the values of m and z.