

Edition 1.0 2021-12

INTERNATIONAL STANDARD

NORME INTERNATIONALE

AMENDMENT 1

AMENDEMENT 1

Wind turbines - iTeh STANDARD PREVIEW
Part 13: Measurement of mechanical loads. (Standards.iteh.ai)

Éoliennes -

Partie 13: Mesurage des charges mécaniques 54877e-756b-49dc-9c36-

eeed5564a1f0/iec-61400-13-2015-amd1-2021

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2021 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IEC Central Office Tel.: +41 22 919 02 11

3, rue de Varembé info@iec.ch CH-1211 Geneva 20 www.iec.ch

Switzerland

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and 20 once a month by email. https://standards.iteh.ai/catalog/standards.iteh.ai/ca

IEC Customer Service Centre - webstoreliec.ch/csciec-61400-13-2015-amd1-2021

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

IEC online collection - oc.iec.ch

Discover our powerful search engine and read freely all the publications previews. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 000 terminological entries in English and French with equivalent terms in 18 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online

A propos de l'IEC

La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC

Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié.

Recherche de publications IEC - webstore.iec.ch/advsearchform

La recherche avancée permet de trouver des publications IEC en utilisant différents critères (numéro de référence, texte, comité d'études, ...). Elle donne aussi des informations sur les proiets et les publications remplacées ou retirées.

IEC Just Published - webstore.iec.ch/justpublished

Restez informé sur les nouvelles publications IEC. Just Published détaille les nouvelles publications parues. Disponible en ligne et une fois par mois par email.

Service Clients - webstore.iec.ch/csc

Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions contactez-nous: sales@iec.ch.

IEC online collection - oc.iec.ch

Découvrez notre puissant moteur de recherche et consultez gratuitement tous les aperçus des publications. Avec un abonnement, vous aurez toujours accès à un contenu à jour adapté à vos besoins.

Electropedia - www.electropedia.org

Le premier dictionnaire d'électrotechnologie en ligne au monde, avec plus de 22 000 articles terminologiques en anglais et en français, ainsi que les termes équivalents dans 16 langues additionnelles. Egalement appelé Vocabulaire Electrotechnique International (IEV) en ligne.

Edition 1.0 2021-12

INTERNATIONAL STANDARD

NORME INTERNATIONALE

AMENDMENT 1
AMENDEMENT 1

Wind turbines - iTeh STANDARD PREVIEW Part 13: Measurement of mechanical loads (Standards.iteh.ai)

Éoliennes –

IEC 61400-13:2015/AMD1:2021

Partie 13: Mesurage des charges mécaniques 54877e-756b-49dc-9c36-

eeed5564a1f0/iec-61400-13-2015-amd1-2021

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 27.180 ISBN 978-2-8322-1054-3

Warning! Make sure that you obtained this publication from an authorized distributor.

Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

INTERNATIONAL ELECTROTECHNICAL COMMISSION

WIND TURBINES -

Part 13: Measurement of mechanical loads

AMENDMENT 1

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publication. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity-independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

This amendment has been prepared by IEC technical committee 88: Wind energy generation systems.

The text of this amendment is based on the following documents:

Draft	Report on voting		
88/795/CDV	88/821/RVC		

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this Amendment is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available

at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/standardsdev/publications/.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- · replaced by a revised edition, or
- amended.

iTeh STANDARD PREVIEW (standards.iteh.ai)

IEC 61400-13:2015/AMD1:2021 https://standards.iteh.ai/catalog/standards/sist/1e54877e-756b-49dc-9c36-eeed5564a1f0/iec-61400-13-2015-amd1-2021

INTRODUCTION

This amendment to IEC 61400-13:2015 addresses the errors found in Annex B which impact a significant portion of that annex.

iTeh STANDARD PREVIEW (standards.iteh.ai)

IEC 61400-13:2015/AMD1:2021 https://standards.iteh.ai/catalog/standards/sist/1e54877e-756b-49dc-9c36-eeed5564a1f0/iec-61400-13-2015-amd1-2021

Annex B

(informative)

Procedure for the evaluation of uncertainties in load measurements on wind turbines

B.2.3 Total uncertainty

B.2.3.3 Total uncertainty

Replace Equation (B.7) with the following new equation:

$$u_{\rm t} = \sqrt{u_{\rm cal}^2 + u_{\rm sig}^2} \tag{B.7}$$

B.3 Uncertainties of binned averaged values

B.3.3 Uncertainty of the bin scatter

Replace Equation (B.8) with the following new equation:

iTeh STA
$$u_{\text{scal}} = stdev_{\text{sig}} \sqrt{N} REVIEW$$
 (B.8)

B.3.4 Uncertainty of the x-ax(squantityards.iteh.ai)

Replace Equation (B.9) with the following new equation: 2021

https://standards.iteh.ai/catalog/standards/sist/1e54877e-756b-49dc-9c36-eeed5564a1f0/iec-61400-13-2015-amd1-2021 $u_x = u_{x,i} \times \frac{y_i - y_{i-1}}{x_i - x_{i-1}}$ (B.9)

B.3.5 Uncertainty of bin averaged mean values

Replace Equation (B.10) with the following new equation:

$$U_{\text{mean}} = \sqrt{u_{\text{t}}^2 + u_{\text{scat}}^2 + u_x^2}$$
 (B.10)

B.5 Examples of an uncertainty evaluation

B.5.1 Example for analytical shunt calibration of tower torque

B.5.1.1 Uncertainty components

Replace Table B.1 with the following table:

Table B.1 – Uncertainty components

Quantity	Symbol	Uncertainty	Unit	Source of information	Category	Distribution	Comment			
Material parameters, cross section geometry and gauges factor in an installation										
Gauges factor	u_k	1	%	Datasheet	В	Gaussian	_			
Misalignment	$u_{F_{Sens}}$	3	0	Estimation	В	Rectangular	_			
Diameter at cross section	$u_{D_{\dot{l}}}$	2,5	mm	Estimation	В	Gaussian	_			
Wall thickness at cross section	$u_{T_{W}}$	0,1	mm	Estimation	В	Gaussian	_			
Young modulus	u_E	5	%	Estimation	В	Gaussian	_			
Poisson ratio	u_v	5	%	Estimation	В	Gaussian	-			
Amplifier calil	bration									
Amplifier and measurement uncertainty concerning gain	$u_{\sf sig_{ m gain}}$	0,1	%	Datasheet / Calibration certificate	В	Gaussian	Measurement value			
Amplifier and measurement uncertainty concerning offset	u _{sigoffset}	o,1 Feh ST	% ANDA	Datasheet / Calibration certificate	EVIEV	Rectangular	Upper value of the measurement range 10 V			
Quantization resolution (Offset)	u_{Q}	≈0,3	C 61400-13:20	Datasheet	В	Rectangular	16 Bit A/D converter, measurement			
(0.1001)	https://	standards.iteh.a	i/catalog/standa	rds/sist/1e5487	_ 7e-756b-49dc-	9c36-	range ±10 V			
Calibration device	$u_{R_{SH}}$	⁰ eded556	4a1f0/iec-6140	Datasheet / Calibration certificate	11-202 B	Gaussian	Value shunt resistant			
Gauges resistance	$u_{R_{SG}}$	1	%	Datasheet	В	Gaussian				
Signal uncertainty										
Signal uncertainty	s_i			Tests, statistics, estimations	А	Gaussian	Evaluation according to B.2.3.2			

B.5.1.2 Calibration uncertainty of an analytical calibration

Replace Equation (B.11) with the following new equation:

$$M = G \times SM_{t} \times \varepsilon \times 2 \tag{B.11}$$

Replace Equation (B.13) with the following new equation:

$$M = G \times SM_{t} \times \frac{2}{k} \times \frac{U_{o}}{U_{i}}$$
(B.13)

Replace Equation (B.14) with the following new equation:

$$S_{M} = \frac{G \times SM_{t} \times \frac{2}{k} \times \frac{U_{o}}{U_{i}}}{\Delta S_{chupt}} \times S_{V}$$
(B.14)

Replace Equation (B.16) with the following new equation:

$$S_{M} = \frac{G \times SM_{t} \times \frac{2}{k} \times \frac{U_{o}}{U_{i}} \times F_{sens}}{\Delta S_{shunt}} \times S_{V}$$
(B.16)

Replace Equation (B.18) with the following new equation:

$$\frac{\partial S_{M}}{\partial E} = \frac{\frac{1}{2 \times (1 + v)} \times SM_{t} \times \frac{2}{k} \times \frac{U_{o}}{U_{i}}}{\Delta S_{shunt}} \times S_{V}$$
(B.18)

Replace Equation (B.19) with the following new equation:

iTeh STANDARD PREVIEW

$$\frac{\partial S_{M}}{\partial v} = \frac{2 \times M_{t} \times \frac{1}{2 \times (1+v)} \times \frac{2}{k} \times \frac{U_{o}}{U_{t}}}{2 \times (1+v)} \times S_{V}$$
(B.19)

https://standards.iteh.ai/catalog/standards/sist/1e54877e-756b-49dc-9c36-

Replace Equation (B.20) with the following new equation: md1-2021

$$\frac{\partial S_{M}}{\partial SM_{t}} = \frac{G \times \frac{2}{k} \times \frac{U_{o}}{U_{i}}}{\Delta S_{shunt}} \times S_{V}$$
(B.20)

Replace the existing text "This lead" at the beginning of the sentence above Equation (B.22) with "This leads".

Replace Equation (B.22) with the following new equation:

$$\frac{\partial S_{\mathsf{M}}}{\partial D_{\mathsf{i}}} = \frac{G \times SM_{\mathsf{t}} \frac{2}{k} \times \frac{U_{\mathsf{o}}}{U_{\mathsf{i}}}}{\Delta S_{\mathsf{shunt}}} \times S_{\mathsf{V}} \tag{B.22}$$

Replace Equation (B.23) with the following new equation:

$$\frac{\partial S_{\mathsf{M}}}{\partial T_{\mathsf{W}}} = \frac{G \times SM_{\mathsf{t}} \frac{2}{k} \times \frac{U_{\mathsf{o}}}{U_{\mathsf{i}}}}{\Delta S_{\mathsf{shunt}}} \times S_{\mathsf{V}} \tag{B.23}$$

Replace Equation (B.24) with the following new equation:

$$\frac{\partial S_{\text{M}}}{\partial k} = \frac{G \times SM_{\text{t}} \times \frac{-2}{k^2} \times \frac{U_{\text{o}}}{U_{\text{i}}}}{\Delta S_{\text{shunt}}} \times S_{\text{V}}$$
(B.24)

Replace Equation (B.25) with the following new equation:

$$\frac{\partial S_{\mathsf{M}}}{\partial R_{\mathsf{SG}}} = \frac{G \times SM_{\mathsf{t}} \times \frac{2}{k} \times \frac{U_{\mathsf{o}}}{U_{\mathsf{i}}}}{\Delta S_{\mathsf{shunt}}} \times S_{\mathsf{V}} \tag{B.25}$$

Replace Equation (B.26) with the following new equation:

$$\frac{\partial S_{\mathsf{M}}}{\partial R_{\mathsf{SH}}} = \frac{G \times SM_{\mathsf{t}} \times \frac{2}{k} \times \frac{U_{\mathsf{o}}}{U_{\mathsf{i}}}}{\Delta S_{\mathsf{shunt}}} \times S_{\mathsf{V}} \tag{B.26}$$

Replace Equation (B.27) with the following new equation:

iTeh STANDARD PREVIEW
$$\underbrace{SSMndards ktev}_{G \times SM_t \times \frac{Z}{k} \times \underbrace{U_o}_{O}}_{\Delta S_{shunt}}$$
(B.27)

IEC 61400-13:2015/AMD1:2021

Replace Equation (B) 29) with the following new equation 877e-756b-49dc-9c36-eeed5564a1f0/iec-61400-13-2015-amd1-2021

$$\frac{\partial S_{\mathsf{M}}}{\partial S_{\mathsf{gain}}} = \frac{G \times SM_{\mathsf{t}} \times \frac{2}{k} \times \frac{U_{\mathsf{o}}}{U_{\mathsf{i}}}}{\Delta S_{\mathsf{shunt}}} \times S_{\mathsf{V}} \tag{B.29}$$

Replace Equation (B.32) with the following new equation:

$$u_{\text{offset}}^2 = u_{\text{sig}_{\text{offset}}}^2 \times \left(\frac{G \times SM_{\text{t}} \times \frac{2}{k} \times \frac{U_{\text{o}}}{U_{\text{i}}}}{\Delta S_{\text{shunt}}} \times R_M \right)^2$$
(B.32)

Replace Table B.2 with the following table (uncertainty values modified for u_{D_i} and u_Q and calibration device unit value and value changed):

Table B.2 - Values and uncertainties for the calculation

Quantity	Symbol Quantity	Value	Unit Value	Symbol Uncertainty	Uncertainty	Unit Uncertainty	Comment			
Material parameters, cross section geometry and gauges factor in an installation										
Gauges factor	k	2,1	-	u_k	1	%				
Misalignment	α	-	_	$u_{F_{ m sens}}$	3	0	See Figure B.1			
Inner diameter at cross section	D_{i}	4	m	$u_{D_{\dot{1}}}$	0,002 5	m	See Figure B.1			
Wall thickness at cross section	T_{w}	0,03	m	$u_{T_{W}}$	0,000 1	m	See Figure B.1			
Young modulus	E	210E9	N/m ²	u_E	5	%				
Poisson ratio	ν	0,27	-	u_v	5	%				
Amplifier calil	bration									
Amplifier and measurement uncertainty concerning gain	- •r	- Lab ST	-	u _{siggain}	0,1	%	Measurement value			
Amplifier and measurement uncertainty concerning offset	-		andaro	u _{sigoffset}	0,1 ai)	%	Upper value of the measurement range 10 V			
Quantization resolution	- https://			rds/sist/1e5487 0-13-2015-am	7e-75 :0,3 19dc- 11-2021	9c36-mV	16 Bit A/D converter, measurement range ±10 V			
Calibration device	R_{SH}	1 00	kOhm	$u_{R_{SH}}$	0,1	%	Shunt resistance			
Gauges resistance	R_{SG}	350	Ohm	$u_{R_{\text{SG}}}$	1	%				

Replace Equation (B.33) with the following new equation:

$$u_E^2 \left(\frac{\partial S_{\rm M}}{\partial E}\right)^2 = \left(1,05 \times 10^{10} \times 3,55 \times 10^{-5} \, \frac{\rm m^3}{\rm V}\right)^2 = 1,39 \times 10^{11} \left(\frac{\rm Nm}{\rm V}\right)^2 \tag{B.33}$$

Replace Equation (B.34) with the following new equation:

$$u_v^2 \left(\frac{\partial S_M}{\partial v}\right)^2 = \left(0.0135 \times -5.88 \times 10^6 \frac{\text{Nm}}{\text{V}}\right)^2 = 6.30 \times 10^9 \left(\frac{\text{Nm}}{\text{V}}\right)^2$$
 (B.34)

Replace Equation (B.35) with the following new equation:

$$u_{D_{\rm i}}^2 \left(\frac{\partial S_{\rm M}}{\partial D_{\rm i}} \right)^2 = \left(0,001\ 25 \times 7,46 \times 10^6 \ \frac{\rm Nm}{\rm V} \right)^2 = 8,71 \times 10^7 \left(\frac{\rm Nm}{\rm V} \right)^2$$
 (B.35)