

ISO/IEC 80079-49

Edition 1.0 2024-05

INTERNATIONAL STANDARD

Explosive atmospheres –

Part 49: Flame arresters – Performance requirements, test methods and limits for use

Document Preview

ISO/IEC 80079-49:2024

https://standards.iteh.ai/catalog/standards/iec/c87a45b8-fb56-484b-82b2-6185de177dfc/iso-iec-80079-49-2024

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2024 ISO/IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about ISO/IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

Tel.: +41 22 919 02 11

IEC Secretariat 3, rue de Varembé CH-1211 Geneva 20

info@iec.ch www.iec.ch

Switzerland

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

IEC Products & Services Portal - products.iec.ch

Discover our powerful search engine and read freely all the publications previews, graphical symbols and the glossary. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 500 terminological entries in English and French, with equivalent terms in 25 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

Document Preview

ISO/IEC 80079-49:2024

https://standards.iteh.ai/catalog/standards/iec/c87a45b8-fb56-484b-82b2-6185de177dfc/iso-iec-80079-49-2024

ISO/IEC 80079-49

Edition 1.0 2024-05

INTERNATIONAL STANDARD

Explosive atmospheres – Teh Standards

Part 49: Flame arresters – Performance requirements, test methods and limits for use

Document Preview

ISO/IEC 80079-49:2024

https://standards.iteh.ai/catalog/standards/iec/c87a45b8-fb56-484b-82b2-6185de177dfc/iso-iec-80079-49-2024

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 13,220.10 ISBN 978-2-8322-8716-3

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

F	DREWC	RD	5			
IN	TRODU	ICTION	7			
1	Scope8					
2	Norm	native references	9			
3	Terms and definitions9					
4	Abbr	eviated terms and symbols	13			
5		Hazards and flame arrester classifications				
	5.1	Flame transmission classification: deflagration, stable and unstable detonation	14			
	5.2	Flame transmission classification: stabilized burning	15			
	5.3	Index of tests	15			
6	General requirements		16			
	6.1	Measuring instruments	16			
	6.2	Flow measurement (air)				
	6.3	Flame transmission test				
	6.3.1					
_	6.3.2					
7	•	ific requirements for static flame arresters				
	7.1	Construction requirements for prototype arresters	19			
	7.2	Design series	19			
	7.3	Flame transmission tests				
	7.3.1 7.3.2		∠U			
	7.3.2					
	7.3.4					
		teh_a1/catalog/standard&jec/cX/a45hX_th56_4X4h_X7h7_6TX5deT//dtc/iso_jec	2-80079-49-2024 33			
8		ific requirements for liquid product detonation flame arresters				
-	8.1	Liquid seals				
	8.2	Foot valves				
	8.3	Flame transmission test				
9		ific requirements for dynamic flame arresters (high velocity vent valves)				
	9.1	General				
	9.2	Flame transmission tests				
	9.2.1	Low flow flame transmission test	37			
	9.2.2	Flame transmission test by opening and closing	39			
	9.2.3	Deflagration test	40			
	9.2.4	Endurance burning test	40			
10	Spec	ific requirements for hydraulic flame arresters	41			
	10.1	Equipment	41			
	10.2	Flame transmission tests	41			
	10.2					
	10.2	3				
	10.2	3				
	10.2					
11		of flame arresters installed on or within gas conveying equipment				
	11 1	General	44			

	ansmission tests neral	
	t procedure for gas conveying equipment with inlet pressure	44
	t procedure for gas conveying equipment with infet pressure 00 hPa	46
	t procedure for gas conveying equipment with inlet pressure	
	00 hPa	
· ·		
	and the bound of	
	rester housing neral information	
	ning markings	
	mples of marking	
	rester element	
	and production	
_	ction	
_		
	e test	
	t	
Annex A (normativ	e) Flow measurement	53
	(https://gtandaudg.itah.ai)	
	ame arresters	
	ne flame arrester	
	neral	
	cial flow measurement for dynamic flame arrestersed oscillation tests of dynamic flame arrester (High velocity vent	55
	Landard Control (1997) Vent	
	ve) Information for selecting flame arresters	
Annex C (informati	ve) Recommended practice	59
Annex D (informati	ve) Evaluation of test results	60
Annex E (normativ	e) Application	62
E.1 General.		62
E.2 Limits fo	r use for static flame arresters	63
E.2.1 In-li	ne flame arrester	63
E.2.2 Pre	-volume flame arrester	63
	onation flame arrester	
	rt time burn flame arrester	
	r use for liquid detonation flame arresters	
	r use for dynamic flame arresters (high velocity vent valves)	
	r use for hydraulic flame arresters	64
	ve) Significant changes between this document and EN ISO	67
Bibliography		69
Figure 4 T		0.4
-	paratus for end-of-line flame arrester for deflagration test	
	paratus for in-line flame arrester for deflagration test	
rigure o – restap∣	paratus for pre-volume flame arrester for deflagration test	24

Figure 4 – Test apparatus for detonation flame arrester for det restriction	
Figure 5 – Test apparatus for detonation flame arrester for det	
Figure 6 – Test apparatus for short time burning test	
Figure 7 – Test apparatus for endurance burning test	
Figure 8 – Liquid product detonation flame arrester	
Figure 9 – End-of-line flame arrester incorporating a non-retur	
Figure 10 – Test apparatus for liquid product detonation flame	arresters36
Figure 11 – Test apparatus for determining the non-hammering flame arresters	
Figure 12 – Test apparatus for hydraulic flame arresters	43
Figure 13 – Test apparatus for the flame transmission test of fon or within gas conveying equipment	
Figure 14 – Example of marking plate, burn rating "a"	50
Figure 15 – Example of marking plate, burn rating "b"	50
Figure A.1 – Test apparatus for recording the pressure drop/flo	
Figure A.2 – Test apparatus for recording the pressure drop/floline flame arresters with or without integrated pressure/vacuur	
Figure A.3 – Test apparatus for determining the non-oscillating flame arresters	
Figure D.1 – Decision process for stable detonation arrester (I	DET3 and DET4)60
Figure D.2 – Decision process for unstable detonation arrester	
Figure E.1 – Test apparatus for hydraulic flame arresters	66
Table 1 – Flame arrester classification for deflagration, stable Table 2 – Summary of tests to be conducted	
Table 3 – Specification of gas-air mixtures for deflagration and	detonation tests18
Table 4 – Specification of gas-air mixtures for short time burni tests of dynamic flame arresters	
Table 5 – Specification of gas-air or vapour-air mixtures for en static flame arresters	
Table 6 – Design series	20
Table 7 – Ratio p_{md}/p_{TB}	27
Table 8 – Number of the individual tests and test parameters f transmission test of flame arresters installed on or within gas with inlet pressures > 600 hPa	conveying equipment
Table 9 – Number of the individual tests and test parameters f transmission test of flame arresters installed on or within gas with inlet pressures ≤ 600 hPa	conveying equipment
Table B.1 – Information for selecting flame arresters	
Table F.1 – Significant changes with respect to EN ISO 16852	

EXPLOSIVE ATMOSPHERES –

Part 49: Flame arresters – Performance requirements, test methods and limits for use

FOREWORD

- 1) ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work.
- 2) The formal decisions or agreements of IEC and ISO on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC and ISO National bodies.
- 3) IEC and ISO documents have the form of recommendations for international use and are accepted by IEC and ISO National bodies in that sense. While all reasonable efforts are made to ensure that the technical content of IEC and ISO documents is accurate, IEC and ISO cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC and ISO National bodies undertake to apply IEC and ISO documents transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC and ISO document and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC and ISO do not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC and ISO marks of conformity. IEC and ISO are not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this document.
- 7) No liability shall attach to IEC and ISO or their directors, employees, servants or agents including individual experts and members of its technical committees and IEC and ISO National bodies for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this ISO/IEC document or any other IEC and ISO documents.
- 8) Attention is drawn to the Normative references cited in this document. Use of the referenced publications is indispensable for the correct application of this document.
- 9) IEC and ISO draw attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC and ISO take no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC and ISO had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at https://patents.iec.ch and www.iso.org/patents. IEC and ISO shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 80079-49 has been prepared by subcommittee 31M: Non-electrical equipment and protective systems for explosive atmospheres, of ISO/IEC joint technical committee 1: Information technology.

This edition cancels and replaces ISO 16852:2016, which has been technically revised. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to ISO 16852:2016:

- a) adaptation of the relevant IEC TC 31 requirements on standards;
- b) modification of the upper limit of the temperature range from 150 $^{\circ}$ C to 200 $^{\circ}$ C under the condition that T_0 shall be not larger than 80 $^{\circ}$ 6 of the auto ignition temperature of the gas-air-mixture:
- c) change of the term "explosion group" to "equipment group" due to editorial requirements in IEC/TC 31;
- d) clarification of the conditions and requirements for flame arresters whose intended operating conditions are outside the atmospheric conditions in 7.3.4 and 7.3.5;

- e) clarification of the requirements on the information for use in Clause 12 f) concerning the burn time;
- f) addition of a permission to the construction requirements both in 7.1 and 14.1 to substitute visual inspection by performing a flow test;
- g) addition of a flow chart for the evaluation of test results as Annex D.

The text of this International Standard is based on the following documents:

Draft	Report on voting
31M/212/FDIS	31M/223/RVD

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

A list of all parts in the ISO/IEC 80079 series, published under the general title *Explosive* atmospheres, can be found on the IEC website.

NOTE The following print types are used:

• Words in italic font in the text are defined in Clause 3.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1, available at www.iec.ch/members_experts/refdocs and www.iso.org/directives.

Document Preview

ISO/IEC 80079-49:2024

https://standards.iteh.ai/catalog/standards/iec/c87a45b8-fb56-484b-82b2-6185de177dfc/iso-iec-80079-49-2024

INTRODUCTION

Flame arresters are protective systems fitted to openings of enclosures or to pipe work and are intended to allow fluid flow but prevent flame transmission if a flammable mixture is ignited. They have widely been used for decades in the chemical and oil industry, and a variety of national standards is available. This document was prepared with an aim to establish an international basis by harmonizing and incorporating recent national developments and standards as far as reasonable.

This document addresses performance requirements and test methods, as well as limits for use for flame arresters.

Only the minimum safety requirements for flame arresters to prevent flame transmission are specified.

The hazard identification of common applications found in industry leads to the specification of the test methods. These test methods reflect standard practical situations and, as such, form the heart of this document because they also allow classification of the various types of flame arresters and then determination of the limits of use.

A considerable number of test methods and test conditions had to be taken into account for two main reasons.

- a) Different types of flame arresters are covered with respect to the operating principle (static, hydraulic, liquid, dynamic) and each type clearly needs its specific test set-up and test procedure.
- b) It is necessary to adapt flame arresters to the special conditions of application (gas, installation) because of the conflicting demands of high flame quenching capability and low pressure loss. This situation is completely different from the otherwise similar principle of protection by flameproof enclosure, for example for electrical equipment, where the importance of process gas flow through any gaps is negligible and importance is placed on the flame quenching effect of the gap.

Consequently, in this document, the testing and classification related to Equipment Groups and installation conditions have been subdivided more than is usually the case in other parts of the ISO/IEC 80079 and IEC 60079 series of standards. In particular,

- Equipment Group IIA is subdivided into sub-groups IIA1 and IIA.
- Equipment Group IIB is subdivided into sub-groups IIB1, IIB2, IIB3 and IIB, and
- the type "detonation arrester" is divided into four sub-types, which take into account specific installation situations.

The test conditions lead to the limits for use which are most important for the user. This document specifies this safety relevant information and its dissemination through the manufacturer's written instructions for use and the marking of the flame arresters.

The limits for use are also a link to more general (operational) safety considerations and regulations, which remain the responsibility the user and regulators. Annex B and Annex C offer some guidance on these aspects.

EXPLOSIVE ATMOSPHERES –

Part 49: Flame arresters – Performance requirements, test methods and limits for use

1 Scope

This document specifies the requirements for flame arresters that prevent flame transmission when explosive gas-air or vapour-air mixtures are present. It establishes uniform principles for the classification, basic construction and information for use, including the marking of flame arresters, and specifies test methods to verify the safety requirements and determine safe limits of use.

This document is applicable to pressures ranging from 80 kPa to 160 kPa and temperatures ranging from -20 °C to +200 °C.

NOTE 1 For flame arresters with operational conditions inside the scope, but outside atmospheric conditions, see Annex E.

NOTE 2 In designing and testing flame arresters for operation under conditions other than those specified above, this document can be used as a guide. This document can also be used to design any additional testing related to the specific conditions of use. This is particularly important when high temperatures and pressures are applied. The test mixtures might need to be modified in these cases.

This document does not apply to the following:

- external safety-related measurement and control equipment that might be required to keep the operational conditions within the established safe limits;
- NOTE 3 Integrated measurement and control equipment, such as integrated temperature and flame sensors as well as parts which, for example, intentionally melt (retaining pin), burn away (weather hoods) or bend (bimetallic strips), are within the scope of this document.
 - flame arresters used for explosive mixtures of vapours and gases, which tend to selfdecompose (for example, acetylene) or which are chemically unstable;
 - flame arresters used for carbon disulfide, due to its special properties;
 - flame arresters whose intended use is for mixtures other than gas-air or vapour-air mixtures (for example, higher oxygen-nitrogen ratio, chlorine as oxidant);
 - flame arrester test procedures for reciprocating internal combustion engines;
 - NOTE 4 Flame arresters for specific applications (e.g. reciprocating internal combustion engines) can use this document as a guide for design but be subject to testing related to their specific use.
 - fast acting valves, extinguishing systems and other explosion isolating systems;
 - Flame arresters used in gas detectors (those being covered for example, by IEC 60079-29-1 and IEC 62990-1).

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60079-0, Explosive atmospheres - Part 0: Equipment - General requirements

IEC 60079-1, Explosive atmospheres – Part 1: Equipment protection by flameproof enclosures "d"

ISO/IEC 80079-34, Explosive atmospheres – Part 34: Application of quality management systems for Ex Product manufacture

3 Terms and definitions

For the purposes of this document, the terms and definitions given in IEC 60079-0 and the following apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- IEC Electropedia: available at https://www.electropedia.org/
- ISO Online browsing platform: available at https://www.iso.org/obp

3.1

flame arrester

device fitted to the opening of an enclosure, or to the connecting pipe work of a system of enclosures, and whose intended function is to allow flow but prevent the transmission of flame

3.2 lards.iteh.ai/catalog/standards/iec/c87a45b8-fb56-484b-82b2-6185de177dfc/iso-iec-80079-49-2024

housing

portion of a *flame arrester* (3.1) whose principal function is to provide a suitable enclosure for the *flame arrester element* (3.3) and allow mechanical connections to other systems

3.3

flame arrester element

portion of a *flame arrester* (3.1) whose principal function is to prevent flame transmission

3.4

stabilized burning

steady burning of a flame stabilized at, or close to, the flame arrester element (3.3)

3.5

short time burning

stabilized burning (3.4) for a specified time

3.6

endurance burning

stabilized burning (3.4) for an unlimited time

3.7

explosion

abrupt oxidation or decomposition reaction producing an increase in temperature, pressure, or both simultaneously

[SOURCE: ISO 8421-1:1987, 1.13]

3.8

deflagration

explosion (3.7) propagating at subsonic velocity

[SOURCE: ISO 8421-1:1987, 1.11]

3.9

detonation

explosion (3.7) propagating at supersonic velocity and characterized by a shock wave

[SOURCE: ISO 8421-1:1987, 1.12]

3.10

stable detonation

detonation (3.9) progressing through a confined system without significant variation of velocity and pressure characteristics

Note 1 to entry: For the atmospheric conditions, test mixtures and test procedures of this document, typical velocities range between 1 600 m/s and 2 200 m/s.

3.11

unstable detonation

detonation (3.9) during the transition of a combustion process from a deflagration (3.8) into a stable detonation (3.10)

Note 1 to entry: The transition occurs in a limited spatial zone, where the velocity of the combustion wave is not constant and where the explosion pressure is significantly higher than in a stable detonation. The position of this transition zone depends, amongst other factors, on pipe diameter, pipe configuration, test gas and explosion group.

Note 2 to entry: An unstable detonation presents a higher level of hazard than a stable detonation due to higher flame speeds and pressures.

3.12

characteristic safety data of explosive mixtures

3 12 1

maximum experimental safe gap

MESG

maximum gap of a joint of 25 mm in width which prevents any transmission of an explosion during tests made under the conditions specified in ISO/IEC 80079-20-1

[SOURCE: ISO/IEC 80079-20-1:2017, 3.4, modified — "in ISO/IEC 80079-20-1" added and Note 1 to entry deleted.]

3.12.2

safe gap

maximum gap of a joint of 25 mm in width which prevents any transmission of an explosion during tests made under the conditions specified in ISO/IEC 80079-20-1 for the specified vapour/gas mixture

3.12.3

equipment grouping

classification system of equipment related to the explosive atmosphere for which they are intended to be used

Note 1 to entry: In a large part of the safety equipment industry "explosion group" is used as an alternative term.

[SOURCE: ISO/IEC 80079-20-1:2017, 3.7, modified - Note 1 to entry replaced.]

3.13

bi-directional flame arrester

flame arrester (3.1) that prevents flame transmission from both sides

3.14

deflagration flame arrester

DEF

flame arrester (3.1) designed to prevent the transmission of a deflagration (3.8)

Note 1 to entry: It can be an end-of-line flame arrester (3.21) or an in-line flame arrester (3.22).

3.15

detonation flame arrester

DET

flame arrester (3.1) designed to prevent the transmission of a detonation

Note 1 to entry: It can be an end-of-line flame arrester (3.21) or an in-line flame arrester (3.22), and can be used for both stable detonations (3.10) and unstable detonations (3.11).

3.16

endurance flame arrester

flame arrester (3.1) that prevents flame transmission during and after endurance burning (3.6)

3.17

static flame arrester

flame arrester (3.1) designed to prevent flame transmission by quenching gaps 150-16c-80079-49-2024

3.17.1

measurable type

flame arrester (3.1) where the quenching gaps of the flame arrester element (3.3) can be technically drawn, measured and controlled

3.17.2

non-measurable type

flame arrester (3.1) where the quenching gaps of the flame arrester element (3.3) cannot be technically drawn, measured or controlled

EXAMPLE Random structures such as knitted mesh, sintered materials and gravel beds.

3.18

dynamic flame arrester

high velocity vent valve

deflagration proof (see 3.14) pressure relief valve designed always to have efflux velocities that prevent the flame propagation against the flow direction

Note 1 to entry: It can be endurance burn proof (see 3.16).

3.19

liquid product detonation flame arrester

flame arrester (3.1) in which the liquid product is used to form a liquid seal as a flame arrester medium, in order to prevent flame transmission of a stable or unstable detonation without restriction (type 4 or type 2)

Note 1 to entry: There are two types of liquid product detonation flame arrester for use in liquid product lines: liquid seals and foot valves.

3.19.1

liquid seal flame arrester

flame arrester (3.1) designed to use the liquid product to form a barrier to flame transmission

3.19.2

foot valve flame arrester

flame arrester (3.1) designed to use the liquid product combined with a non-return valve to form a barrier to flame transmission

3.20

hydraulic flame arrester

flame arrester (3.1) designed to break the flow of an explosive mixture into discrete bubbles in a water column, thus preventing flame transmission

3.21

end-of-line flame arrester

flame arrester (3.1) that is fitted with one pipe connection only

3.22

in-line flame arrester

flame arrester (3.1) that is fitted with two pipe connections, one on each side of the flame arrester

3.23

pre-volume flame arresterdards/iec/c87a45b8-fb56-484b-82b2-6185de177dfc/iso-iec-80079-49-2024

VDEF flame arrester (3.1) that, after ignition by an internal ignition source, prevents flame

transmission from inside an explosion-pressure-resistant containment (for example, a vessel or closed pipe work) to the outside, or into the connecting pipe work

Note 1 to entry: Explosion-pressure resistance is a property of vessels and equipment designed to withstand the expected explosion pressure without becoming permanently deformed.

3.24

integrated temperature sensor

temperature sensor integrated into the flame arrester, as specified by the manufacturer of the flame arrester, in order to provide a signal suitable to activate counter measures