

Designation: C1198 - 09 (Reapproved 2013) C1198 - 20

Standard Test Method for Dynamic Young's Modulus, Shear Modulus, and Poisson's Ratio for Advanced Ceramics by Sonic Resonance¹

This standard is issued under the fixed designation C1198; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope Scope*

- 1.1 This test method covers the determination of the dynamic elastic properties of advanced ceramics. Specimens of these materials possess specific mechanical resonant frequencies that are determined by the elastic modulus, mass, and geometry of the test specimen. Therefore, the dynamic elastic properties of a material can be computed if the geometry, mass, and mechanical resonant frequencies of a suitable rectangular or cylindrical test specimen of that material can be measured. The resonant frequencies in flexure and torsion are measured by mechanical excitation of vibrations of the test specimen in a suspended mode (Section 4 and Figs. 1 and 4). Dynamic Young's modulus is determined using the resonant frequency in the flexural mode of vibration. The dynamic shear modulus, or modulus of rigidity, is found using torsional resonant vibrations. Dynamic Young's modulus and dynamic shear modulus are used to compute Poisson's ratio.
- 1.2 This test method measures the resonant frequencies of test specimens of suitable geometry by mechanically exciting them at continuously variable frequencies. Mechanical excitation of the bars is provided through the use of a transducer that transforms a cyclic electrical signal into a cyclic mechanical force on the specimen. A second transducer senses the resulting mechanical vibrations of the specimen and transforms them into an electrical signal. The amplitude and frequency of the signal are measured by an oscilloscope or other means to detect resonant vibration in the desired mode. The resonant frequencies, dimensions, and mass of the specimen are used to calculate dynamic Young's modulus and dynamic shear modulus. (See Fig. 1)
- 1.2 This test method is specifically appropriate for advanced ceramics that are elastic, homogeneous, and isotropic (1).² Advanced ceramics of a composite character (particulate, whisker, or fiber reinforced) may be tested by this test method with the understanding that the character (volume fraction, size, morphology, distribution, orientation, elastic properties, and interfacial bonding) of the reinforcement in the test specimen will have a direct effect on the elastic properties. These reinforcement effects must be considered in interpreting the test results for composites. This test method is not satisfactory for specimens that have cracks or voids that are major discontinuities in the specimen. Neither is the test method satisfactory when these materials cannot be fabricated in a uniform rectangular or circular eross section: cross-section.
- 1.3 A high-temperature furnace and cryogenic cabinet are described for measuring the dynamic elastic moduli as a function of temperature from −195 to 1200°C.1200 °C.
- 1.5 Modification of this test method for use in quality control is possible. A range of acceptable resonant frequencies is determined for a specimen with a particular geometry and mass. Any specimen with a frequency response falling outside this frequency range is rejected. The actual modulus of each specimen need not be determined as long as the limits of the selected frequency range are known to include the resonant frequency that the specimen must possess if its geometry and mass are within specified tolerances.
- 1.4 The procedures in this test method are, where possible, consistent with the procedures of There are material-specific ASTM standards that cover the determination of resonance frequencies and elastic properties of specific materials by sonic resonance or by impulse excitation of vibration. Test Methods C215, C623, C747, C848 and, C848C1259-, E1875 The tables of, and E1876 these test methods have been replaced by the actual formulas from the original references. With the advent of computers and sophisticated hand calculators, the actual formulas can be easily used and provide greater accuracy than factor tables may differ from this test method in several areas (for example: sample size, dimensional tolerances, sample preparation, calculation details,

¹ This test method is under the jurisdiction of ASTM Committee C28 on Advanced Ceramics and is the direct responsibility of Subcommittee C28.01 on Mechanical Properties and Performance.

Current edition approved Aug. 1, 2013Jan. 1, 2020. Published September 2013January 2020. Originally approved in 1991. Last previous edition approved in 20092013 as C1198 – 09.-09 (2013). DOI: 10.1520/C1198-09R13.10.1520/C1198-20.

² The boldface numbers given in parentheses refer to a list of references at the end of the text.

- etc.). The testing of those materials should be done in compliance with the appropriate material-specific standards. Where possible, the procedures, sample specifications, and calculations in this standard are consistent with the other test methods.
- 1.5 The values stated in SI units are to be regarded as the standard. The <u>non-SI</u> values given in parentheses are for information only. only and are not considered standard.
- 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety safety, health, and health environmental practices and determine the applicability of regulatory limitations prior to use.
- 1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:³

C215 Test Method for Fundamental Transverse, Longitudinal, and Torsional Resonant Frequencies of Concrete Specimens
C372 Test Method for Linear Thermal Expansion of Porcelain Enamel and Glaze Frits and Fired Ceramic Whiteware Products

by the Dilatometer Method

C623 Test Method for Young's Modulus, Shear Modulus, and Poisson's Ratio for Glass and Glass-Ceramics by Resonance

C747 Test Method for Moduli of Elasticity and Fundamental Frequencies of Carbon and Graphite Materials by Sonic Resonance

C848 Test Method for Young's Modulus, Shear Modulus, and Poisson's Ratio For Ceramic Whitewares by Resonance

C1145 Terminology of Advanced Ceramics

C1161 Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature

C1259 Test Method for Dynamic Young's Modulus, Shear Modulus, and Poisson's Ratio for Advanced Ceramics by Impulse Excitation of Vibration

E6 Terminology Relating to Methods of Mechanical Testing

D4092E1875 Terminology Test Method for Plastics: Dynamic Mechanical Properties Dynamic Young's Modulus, Shear Modulus, and Poisson's Ratio by Sonic Resonance

E1876 Test Method for Dynamic Young's Modulus, Shear Modulus, and Poisson's Ratio by Impulse Excitation of Vibration E2001 Guide for Resonant Ultrasound Spectroscopy for Defect Detection in Both Metallic and Non-metallic Parts 2.2 ISO Standard:⁴

ISO 14704 Test Method for Flexural Strength of Monolithic Ceramics at Room Temperature

3. Terminology

- 3.1 Definitions:
- 3.1.1 *advanced ceramic, n*—a highly engineered, high performance, predominately nonmetallic, inorganic, ceramic material having specific functional attributes.
- 3.1.2 *dynamic elastic modulus, n*—the elastic modulus, either Young's modulus or shear modulus, that is measured in a dynamic mechanical measurement.

 E1876
- 3.1.3 advanced ceramic, dynamic mechanical measurement, n—a highly engineered, high performance, predominately nonmetallic, inorganic, ceramic material having specific functional attributes. technique in which either the modulus or damping, or both, of a substance under oscillatory load or displacement is measured as a function of temperature, frequency, or time, or combination thereof.
- 3.1.1.1 dynamic mechanical measurement, n—a technique in which either the modulus or damping, or both, of a substance under oscillatory load or displacement is measured as a function of temperature, frequency, or time, or combination thereof. D4092
- 3.1.4 *elastic limit* [FL^{-2}],n—the greatest stress that a material is capable of sustaining without permanent strain remaining upon complete release of the stress.
 - 3.1.5 elastic modulus $[FL^{-2}]$, n—the ratio of stress to strain below the proportional limit.
- 3.1.6 *Poisson's ratio* (µ) [nd],*n*—the absolute value of the ratio of transverse strain to the corresponding axial strain resulting from uniformly distributed axial stress below the proportional limit of the material.

3.1.6.1 Discussion—

³ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

⁴ Available from International Organization for Standardization (ISO), ISO Central Secretariat, BIBC II, Chemin de Blandonnet 8, CP 401, 1214 Vernier, Geneva, Switzerland, http://www.iso.org.

In isotropic materials Young's modulus (E), shear modulus (G), and Poisson's ratio (μ) are related by the following equation:

$$\mu = (E/2G) - 1$$

- 3.1.7 proportional limit $[FL^{-2}]$, n—the greatest stress that a material is capable of sustaining without deviation from proportionality of stress to strain (Hooke's law).
 - 3.1.8 shear modulus (G) $[FL^{-2}]$, n—the elastic modulus in shear or torsion. Also called modulus of rigidity or torsional modulus.

E6

3.1.9 Young's modulus (E) $[FL^{-2}]$, n—the elastic modulus in tension or compression.

E6


- 3.2 Definitions of Terms Specific to This Standard:
- 3.2.1 *anti-nodes*, *n*—an unconstrained slender rod or bar in resonance contains two or more locations that have local maximum displacements, called anti-nodes. For the fundamental flexure resonance, the anti-nodes are located at the two ends and the center of the specimen.
- 3.2.2 *elastic*, *adj*—the property of a material such that an application of stress within the elastic limit of that material making up the body being stressed will cause an instantaneous and uniform deformation, that will be eliminated upon removal of the stress, with the body returning instantly to its original size and shape without energy loss. Most advanced ceramics conform to this definition well enough to make this resonance test valid.
- 3.2.3 *flexural vibrations*, *n*—the vibrations that occur when the oscillations in a slender rod or bar are in the plane normal to the length dimension.
- 3.2.4 *homogeneous, adj*—the condition of a specimen such that the composition and density are uniform, such that any smaller specimen taken from the original is representative of the whole. Practically, as long as the geometrical dimensions of the test specimen are large with respect to the size of individual grains, crystals, or components, the body can be considered homogeneous.
- 3.2.5 *isotropic*, *adj*—the condition of a specimen such that the values of the elastic properties are the same in all directions in the material. Advanced ceramics are considered isotropic on a macroscopic scale, if they are homogeneous and there is a random distribution and orientation of phases, crystallites, and components.
- 3.2.6 nodes, n—a slender rod or bar in resonance contains one or more locations having a constant zero displacement, called nodes. For the fundamental flexural resonance, the nodes are located at 0.224 L from each end, where L is the length of the specimen.
- 3.2.7 resonance, n—a slender rod or bar driven into one of the modes of vibration described in 3.2.3 or 3.2.9 is said to be in resonance when the imposed frequency is such that the resultant displacements for a given amount of driving force are at a maximum. The resonant frequencies are natural vibration frequencies that are determined by the elastic modulus, mass, and dimensions of the test specimen.
- 3.2.8 slender rod or bar, n—in dynamic elastic property testing, a specimen whose ratio of length to minimum cross-sectional dimension is at least five and preferably in the range of 20 to 25.
- 3.2.9 *torsional vibrations*, *n*—the vibrations that occur when the oscillations in each cross-sectional plane of a slender rod or bar are such that the plane twists around the length dimension axis.

4. Summary of Test Method

4.1 This test method measures the resonant frequencies of test specimens of suitable geometry by exciting them at continuously variable frequencies. Mechanical excitation of the bars is provided through the use of a transducer that transforms a cyclic electrical signal into a cyclic mechanical force on the specimen. A second transducer senses the resulting mechanical vibrations of the specimen and transforms them into an electrical signal. The amplitude and frequency of the signal are measured by an oscilloscope or other means to detect resonance. The resonant frequencies, dimensions, and mass of the specimen are used to calculate dynamic Young's modulus and dynamic shear modulus.

5. Significance and Use

- 5.1 This test method may be used for material development, characterization, design data generation, and quality control purposes. It is specifically appropriate for determining the modulus of advanced ceramics that are elastic, homogeneous, and isotropic.
- 5.1.1 This test method is nondestructive in nature. Only minute stresses are applied to the specimen, thus minimizing the possibility of fracture.
- 5.1.2 The period of time during which measurement stress is applied and removed is of the order of hundreds of microseconds. With this test method it is feasible to perform measurements at high temperatures, where delayed elastic and creep effects would invalidate modulus measurements calculated from static loading.
- 5.2 This test method has advantages in certain respects over the use of static loading systems for measuring moduli in advanced ceramics. It is nondestructive in nature and can be used for specimens prepared for other tests. Specimens are subjected to minute strains; hence, the moduli are measured at or near the origin of the stress-strain curve with the minimum possibility of fracture.

The period of time during which measurement stress is applied and removed is of the order of hundreds of microseconds. With this test method it is feasible to perform measurements at high temperatures, where delayed elastic and creep effects would invalidate modulus measurements calculated from static loading.

- 5.3 The sonic resonant frequency technique can also be used as a nondestructive evaluation tool for detecting and screening defects (cracks, voids, porosity, density variations) in ceramic parts. These defects may change the elastic response and the observed resonant frequency of the test specimen. Guide E2001 describes a procedure for detecting such defects in metallic and nonmetallic parts using the resonant frequency method.
- 5.4 Modification of this test method for use in quality control is possible. A range of acceptable resonant frequencies is determined for a specimen with a particular geometry and mass. Any specimen with a frequency response falling outside this frequency range is rejected. The actual modulus of each specimen need not be determined as long as the limits of the selected frequency range are known to include the resonant frequency that the specimen must possess if its geometry and mass are within specified tolerances.

6. Interferences

- 6.1 The relationships between resonant frequency and dynamic modulus presented herein are specifically applicable to homogeneous, elastic, isotropic materials.
- 6.1.1 This test method of determining the moduli is applicable to composite ceramics and inhomogeneous materials only with careful consideration of the effect of inhomogeneities and anisotropy. The character (volume fraction, size, morphology, distribution, orientation, elastic properties, and interfacial bonding) of the reinforcement/inhomogeneities in the specimens will have a direct effect on the elastic properties of the specimen as a whole. These effects must be considered in interpreting the test results for composites and inhomogeneous materials.
- 6.1.2 If specific surface treatments (coatings, machining, grinding, etching, etc.) change the elastic properties of the near-surface material, there will be accentuated effects on the properties measured by this flexural method, as compared to static/bulk measurements by tensile or compression testing.
- 6.1.3 This test method is not satisfactory for specimens that have major discontinuities, such as large cracks (internal or surface) or voids.
- 6.2 This test method for determining moduli is limited to specimens with regular geometries (rectangular parallelepiped and cylinders) for which analytical equations are available to relate geometry, mass, and modulus to the resonant vibration frequencies. This test method is not appropriate for determining the elastic properties of materials which cannot be fabricated into such geometries.
- 6.2.1 The analytical equations assume parallel/concentric dimensions for the regular geometries of the specimen. Deviations from the specified tolerances for the dimensions of the specimens will change the resonant frequencies and introduce error into the calculations.
- 6.2.2 Edge treatments such as chamfers or radii are not considered in the analytical equations. Edge chamfers on flexure bars prepared according to Test Method C1161 will change the resonant frequency of the test bars and introduce error into the calculations of the dynamic modulus. It is recommended that specimens for this test not have chamfered or rounded edges. Alternately, if narrow rectangular specimens with chamfers or edge radii are tested, then the procedures in Annex A1 should be used to correct the calculated Young's modulus, *E*.
- 6.2.3 For specimens with as-fabricated/rough or uneven surfaces, variations in dimension can have a significant effect in the calculations. For example, in the calculation of the dynamic modulus, the modulus value is inversely proportional to the cube of the thickness. Uniform specimen dimensions and precise measurements are essential for accurate results.

7. Apparatus

- 7.1 The test apparatus is shown in Fig. 1. It consists of a variable-frequency audio oscillator, used to generate a sinusoidal voltage, and a power amplifier and suitable transducer to convert the electrical signal to a mechanical driving vibration. A frequency meter (preferably digital) monitors the audio oscillator output to provide an accurate frequency determination. A suitable suspension-coupling system supports the test specimen. Another transducer acts to detect mechanical vibration in the specimen and to convert it into an electrical signal that is passed through an amplifier and displayed on an indicating meter. The meter may be a voltmeter, microammeter, or oscilloscope. An oscilloscope is recommended because it enables the operator to positively identify resonances, including higher order higher-order harmonics, by Lissajous figure analysis. If a Lissajous figure is desired, the output of the oscillator is also coupled to the horizontal plates of the oscilloscope. If temperature-dependent data are desired, a suitable furnace or cryogenic chamber is used. Details of the equipment are as follows:
- 7.2 Audio Oscillator, having a continuously variable frequency output from about 100 Hz to at least 30 kHz. Frequency drift shall not exceed 1 Hz/min for any given setting.
- 7.3 Audio Amplifier, having a power output sufficient to ensure that the type of transducer used can excite any specimen the mass of which falls within a specified range.

∰ C1198 – 20

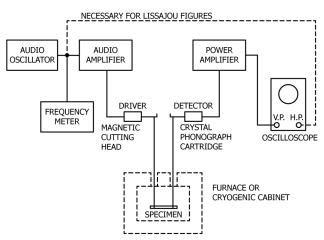


FIG. 1 Block Diagram of a Typical Test Apparatus

- 7.4 Transducers—Two are required; one used as a driver may be a speaker of the tweeter type or a magnetic cutting head or other similar device depending on the type of coupling chosen for use between the transducer and the specimen. The other transducer, used as a detector, may be a crystal or magnetic reluctance type of photograph cartridge. A capacitive pickup may be used if desired. An electromagnetic coupling system with an attached metal foil may also be used, with due consideration for effects of the foil on the natural vibration of the test bar. The frequency response of the transducer across the frequency range of interest shall have at least a 6.5 kHz-6.5-kHz bandwidth before -3 dB power loss occurs.
- 7.5 *Power Amplifier*, in the detector circuit shall be impedance matched with the type of detector transducer selected and shall serve as a prescope amplifier.
 - 7.6 Cathode-Ray Oscilloscope, any model suitable for general laboratory work.
 - 7.7 Frequency Counter, preferably digital, shall be able to measure frequencies to within ± 1 within ± 1 Hz.
- 7.8 Furnace—If data at elevated temperature are desired, a furnace shall be used that is capable of controlled heating and cooling. It shall have a specimen zone large enough for the specimen to be uniform in temperature within $\pm 5^{\circ}\text{C} \pm 5^{\circ}\text{C}$ along its length through the range of temperatures encountered in testing. It is recommended that an independent thermocouple be placed in close proximity to (within 5 mm), but not touching, the center of the specimen to accurately measure temperature during heating and cooling.
- 7.9 Cryogenic Chamber—For data at cryogenic temperatures, any chamber shall suffice that shall be capable of controlled heating/cooling, frost-free frost-free, and uniform in temperature within $\pm 5^{\circ}\text{C} \pm 5^{\circ}\text{C}$ over the length of the specimen at any selected temperature. A suitable cryogenic chamber is shown in Fig. 2 (2). It is recommended that an independent thermocouple be placed in close proximity to (within 5 mm), but not touching, the center of the specimen to accurately measure temperature during heating and cooling.
- 7.10 Specimen Suspension—Any method of specimen suspension shall be used that is adequate for the temperatures encountered in testing and that allows the specimen to vibrate without significant restriction. Thread suspension is the system of choice for cryogenic and high-temperature testing. (See Fig. 1 and Fig. 3.) Common cotton thread, silica-glass fiber thread, oxidation-resistant nickel (or platinum) alloy wire, or platinum wire may be used. If metal wire suspension is used in the furnace, coupling characteristics will be improved if, outside the temperature zone, the wire is coupled to cotton thread, and the thread is coupled to the transducer. The specimen should be initially suspended at distances of approximately 0.1 L from each end. The specimen should not be suspended at its fundamental flexural node locations (0.224 L from each end). The suspension point distances can be adjusted experimentally to maximize the vibrational deflection and resulting signal. For torsional vibration, the axes of suspension have to be off-center from the longitudinal axis of the specimen (shown in Fig. 3).
- 7.11 Specimen Supports—If the specimen is supported on direct contact direct-contact supports, the supports shall permit the specimen to oscillate without significant restriction in the desired mode. This is accomplished for flexural modes by supporting the specimen at its transverse fundamental node locations (0.224 L from each end). In torsional modes the specimen should be supported at its center point. The supports should have minimal area in contact with the specimen and shall be cork, rubber, or similar material. In order to properly identify resonant frequencies, the transducers should be movable along the total specimen length and width. (See Fig. 4.) The transducer contact pressure should be consistent with good response and minimal interference with the free vibration of the specimen.

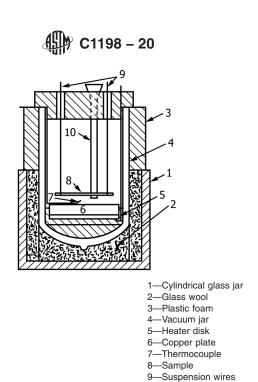


FIG. 2 DetailDetailed Drawing of a Typical Cryogenic Chamber

10—Fill port for liquid

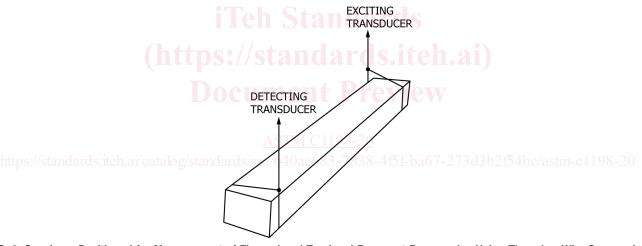


FIG. 3 Specimen Positioned for Measurement of Flexural and Torsional Resonant Frequencies Using Thread or Wire Suspension

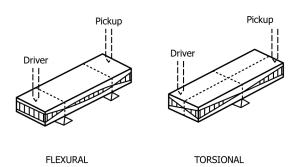


FIG. 4 Specimen Positioned for Measurement of Flexural and Torsional Resonant Frequencies Using Direct Support and Direct Contact
Transducers

8. Test Specimen

8.1 Prepare the specimens so that they are either rectangular or circular in eross section. cross-section. Either geometry can be used to measure both dynamic Young's modulus and dynamic shear modulus. However, experimental difficulties in obtaining