

Edition 2.0 2025-01

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Ultrasonics – Hydrophones – Part 2: Calibration for ultrasonic fields

Ultrasons – Hydrophones – Partie 2: Etalonnage des champs ultrasoniques

IEC 62127-2:2025

https://standards.iteh.ai/catalog/standards/iec/1e6f20cd-856f-470d-ac8b-ead402cd5d8d/iec-62127-2-2025

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2025 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IEC Secretariat 3, rue de Varembé CH-1211 Geneva 20 Switzerland Tel.: +41 22 919 02 11 info@iec.ch www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

IEC Products & Services Portal - products.iec.ch

Discover our powerful search engine and read freely all the publications previews, graphical symbols and the glossary. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 500 terminological entries in English and French, with equivalent terms in 25 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

A propos de l'IEC

La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC

Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié.

Recherche de publications IEC -

webstore.iec.ch/advsearchform

La recherche avancée permet de trouver des publications IEC en utilisant différents critères (numéro de référence, texte, comité d'études, ...). Elle donne aussi des informations sur les projets et les publications remplacées ou retirées.

IEC Just Published - webstore.iec.ch/justpublished

Restez informé sur les nouvelles publications IEC. Just Published détaille les nouvelles publications parues. Disponible en ligne et une fois par mois par email.

Service Clients - webstore.iec.ch/csc

Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions contactez-nous: sales@iec.ch.

IEC Products & Services Portal - products.iec.ch

Découvrez notre puissant moteur de recherche et consultez gratuitement tous les aperçus des publications, symboles graphiques et le glossaire. Avec un abonnement, vous aurez toujours accès à un contenu à jour adapté à vos besoins.

Electropedia - www.electropedia.org

Le premier dictionnaire d'électrotechnologie en ligne au monde, avec plus de 22 500 articles terminologiques en anglais et en français, ainsi que les termes équivalents dans 25 langues additionnelles. Egalement appelé Vocabulaire Electrotechnique International (IEV) en ligne.

Edition 2.0 2025-01

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Ultrasonics – Hydrophones – A Standards Part 2: Calibration for ultrasonic fields

Ultrasons – Hydrophones – Partie 2: Etalonnage des champs ultrasoniques

IEC 62127-2:2025

https://standards.iteh.ai/catalog/standards/iec/1e6f20cd-856f-470d-ac8b-ead402cd5d8d/iec-62127-2-2025

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 17.140.50

ISBN 978-2-8327-0091-4

Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

 Registered trademark of the International Electrotechnical Commission Marque déposée de la Commission Electrotechnique Internationale

CONTENTS

F	OREWO	RD	8
IN	ITRODU	JCTION	10
1	Scop	e	11
2	Norn	native references	11
3	Term	ns and definitions	
4	List	of symbols	21
5	Over	view of calibration procedures	24
Ũ	5 1	Principles	24
	5.2	Summary of calibration procedures	25
	5.3	Reporting of results	
	5.4	Recommended calibration periods	
6	Gene	eric requirements of a hydrophone calibration system	
	6.1	Mechanical positioning	
	6.1.1	General	
	6.1.2	Accuracy of the axial hydrophone position	
	6.1.3	Accuracy of the lateral hydrophone position	
	6.2	Temperature measurements and temperature stability	29
	6.3	Hydrophone size	29
	6.4	Measurement vessel and water properties	
	6.5	Measurement of output voltage	
7	Elec	trical considerations	
	7.1	Signal type	
	7.2	Earthing	31
	7.3	Measurement of hydrophone output voltage	31
	7.3.1	General	
	7.3.2	Electrical loading by measuring instrument	31
	7.3.3	Electrical loading by extension cables	31
	7.3.4	Noise	32
	7.3.5	Cross-talk (radio-frequency rf pick-up) and acoustic interference	32
_	7.3.6	Integral hydrophone pre-amplifiers	
8	Prep	aration of hydrophones	32
	8.1	General	32
	8.2	Wetting	
	8.3	Hydrophone support	
	8.4	Influence of cable	
9	Free	field reciprocity calibration	
	9.1	General	
	9.2	Object	
	9.3	General principles	
	9.3.1	General	
	9.3.2	Solf registration method	
	9.3.3 0 2 4	Two transducer reciprocity calibration method	34 م
	9.3.4 Q /	Two-transducer reciprocity calibration method	34 2 <i>1</i>
	9. 1 9.4 1	General	
	942	Auxiliary transducers	
	0.7.2		······································

9.4.3	Reflector	
9.4.4	Measurement field	
9.4.5	Reciprocity approach	
9.4.6	Measurement procedure	
10 Free fi	eld calibration by planar scanning	35
10 1 (Seneral	35
10.1		
10.2		
10.3	Procedural requirements	
10.4	Hydrophone scapning	
10.4.1	Power measurement	
10.4.2		
10.4.3	Manauroment conditions	
10.4.4	Measuremente	
10.4.5	Measurements	ວະ ວດ
11 5	offections and sources of uncertainty	38 20
II Free fi	eid campration by optical interferometry	
11.1 (Seneral	
11.2 F	rinciple	
12 Calibra	ation by comparison using a standard hydrophone	
12.1 (Seneral	
12.2 0	bject	
12.3 F	Principle	40
12.4 F	Procedural requirements	40
12.4.1	Source transducer	40
12.4.2	Source transducer drive signal	40
12.4.3	Measurement system	40
12.5 F	Procedure	41
s://star12.5.1	Measurements (Type I): determination of the directional response of a hydrophone	2127-2 4 1
12.5.2	Measurements (Type II): calibration by comparison using a standard	
	hydrophone	
12.6 N	/laximum hydrophone size	
Annex A (ir	formative) Assessment of uncertainty in free field calibration of	
nydrophone	}\$	43
A.1 (Seneral	43
A.2 (Overall (expanded) uncertainty	43
A.3 (Common sources of uncertainty	43
Annex B (ir	formative) Behaviour of PVDF polymer sensors in high-intensity ultrasonic	A [
В.1 (jeneral	
B.2 1	heoretical background	45
B.3 1	ests	
B.4 F	esults	
B.5 C	Conclusions	
Annex C (ir	Iformative) Electrical loading corrections	48
C.1 C	Seneral	48
C.2 (Corrections using complex impedance	48
C.3 (Corrections using only capacitances	

D.1	Overview	50
D.2	Hydrophone scanning methodology	50
D.3	Corrections and sources of measurement uncertainty	51
D.3.	1 Total power	51
D.3.	2 Received hydrophone signal	51
D.3.	3 Integration	52
D.3.	4 Directional response	52
D.3.	5 Finite size of the hydrophone	53
D.3.	6 Noise	53
D.3.	7 Nonlinear propagation	54
D.3.	8 Planar scanning	55
D.3.	9 Intensity proportional to pressure squared	55
D.4	Rationale behind the planar scanning technique for calibrating hydrophones	56
D.4.	1 General	56
D.4.	2 Relationship between hydrophone and transducer effective radii	56
D.4.	3 Justification for $a_t / l \le 0,5$	56
П 4	4 Derivation of Formula (D 2)	
D 4	5 Effect of nonlinear propagation D.3.7	57
Annex F	(informative) Properties of water	60
	Conoral	60
⊑.1 ⊏ 0	Attenuation coefficient for propagation in water	00
Annex F interfero	(informative) The absolute calibration of hydrophones by optical metry	62
F.1	Overview	62
F.2	Present positionIEC. 62127-2:2025	62
//star F.2 .	1 Magnomic" or nonlinear propagation-based method	62
F.2.	2 Optical interferometry	63
F.2.	3 High-frequency implementations of optical interferometry	63
Annex G	(informative) Waveform concepts	78
G.1	Overview	78
G.2	Temporal waveform, frequency concepts and hydrophone positioning for comparison calibrations of hydrophones	78
G.3	Temporal waveform and frequency coverage concepts	79
G.3	1 Using a narrow-band tone-burst (concept a)	79
G.3	2 Using a broadband waveform resulting from a narrow-band tone-burst after nonlinear propagation (concept b)	80
G.3	3 Using a broadband pulse (concept c)	80
G.3	4 Using a continuous wave frequency sweep with time delay spectrometry (concept d)	81
G.3	5 Continuous wave frequency sweep with TGFA (concept e)	81
G.4	Hydrophone position concepts	81
G.4	1 Near-field hydrophone position (concept A)	81
G.4	2 Far field hydrophone position (concept B)	81
G.4	3 Far field hydrophone position with special reference to a long propagation path in order to achieve nonlinear distortion (concept C)	82
G.4	4 Geometric spherical focus position with focusing source transducer (low voltage or linear excitation) (concept D)	82

Annex D (informative) Absolute calibration of hydrophones using the planar scanning

	F	
_	:)	-

G.4.5	Geometric spherical focus position with focusing source transducer and high voltage excitation in order to achieve nonlinear distortion (concept E)	82
G.5 S	Special considerations for calibrations close to the face of a transducer	83
G.5.1	General requirement	83
G.5.2	Influence of edge waves	83
G.5.3	Potential influence of head waves	84
G.5.4	Treatment of head waves close to the transducer	84
G.5.5	Statements on the usable paraxial plane wave region in the case of a near-field hydrophone position, considering both edge wave and head wave contributions	
Annex H (ir	formative) Time delay spectrometry – Requirements and a brief review of	
the techniq	ue	87
H.1 (General	87
H.2 C t	Calibration and performance evaluation of ultrasonic hydrophones using ime delay spectrometry	87
H.2.1	Ultrasonic field parameter measured	87
H.2.2	Ultrasonic frequency range over which the technique is applicable	87
H.2.3	Ultrasonic field configuration for which the technique is applicable	87
H.2.4	Spatial resolution	88
H.2.5	Sensitivity of the technique	88
H.2.6	Range over which the sensitivity is measured	88
H.2.7	Reproducibility	88
H.2.8	Impulse response	88
H.2.9	Procedure for performing measurements	88
H.3 M	leasurement procedure for sensitivity intercomparison	89
H.4 N	leasurement procedure (reciprocity calibration)	89
H.5 L	imitations	89
Annex I (int	formative) Determination of the phase response of hydrophones	<u></u>
l.1 (Dverview	90
1.2 0	Coherent time delay spectrometry	91
1.2.1	Principle of operation	91
1.2.2	Example results	91
1.2.3	Uncertainties	92
1.2.4	Limitations	93
I.3 F	Pulse calibration technique with optical multilayer hydrophone	93
I.3.1	Principle of operation	93
1.3.2	Example of results	93
1.3.3	Uncertainties	94
1.3.4	Limitations	94
I.4 N	Ionlinear pulse propagation modelling	95
1.4.1	Principle of operation	95
1.4.2	Limitations	95
Annex J (in hydrophone	formative) Maximum size considerations for the active element of a	96
J.1 M	/laximum hydrophone size in the near field case (Annex G – hydrophone position concept A)	96
J.2 M	Aaximum hydrophone size in the far field case (Annex G – hydrophone osition concept B)	96

J.3	Maximum hydrophone size in the far field case with special reference to a long propagation path in order to achieve nonlinear distortion (Annex G – hydrophone position concept C)	96		
Annex ł	(informative) Two-transducer reciprocity calibration method	98		
K.1	General	98		
K.2	Fundamentals of reciprocity	98		
K.3	Electrical quantities	99		
K.4	Diffraction correction and loss due to nonlinear sound propagation	100		
K.5	Ultrasonic field	100		
K.6	Experimental set-up	101		
K.6	.1 General	101		
K.6	.2 Twisting reflector	101		
K.6	.3 Translational reflector	102		
K.6	.4 Translational auxiliary transducer	102		
K.7	Hydrophone calibration using a calibrated spherically curved auxiliary			
	transducer based on the self-reciprocity method	103		
Bibliogr	aphy	107		
Figure I	.1 – Experimental set-up of the interferometric foil technique	65		
Figure F	F.2 – End-of-cable open-circuit sensitivity level $L_{M_{f c}}$ of a coplanar membrane			
hydroph	oneIlen Standards	67		
Figure F	3 – Experimental set-up of the heterodyne vibrometer technique	69		
Figure F	Figure F.4 – Measured frequency-dependent radial profiles of the acoustic pulse field 71			
Figure Figure	F.5 – Experimentally determined spatial averaging correction versus frequency ophones of different effective element diameter. <i>d</i> off	72		
Figure Figure	F.6 – End-of-cable loaded sensitivity level and sensitivity phase of a coplanar	73		
Figure Figure	F.7 – Hydrophone waveform generated by a 9 μ m coplanar membrane pone positioned at the focus of a 5 MHz transducer (focal length 51 mm).	2127-2-202 74		
Figure Figure	7.8 – Interferometer displacement waveform generated with the pellicle ed at the focus of the 5 MHz transducer (focal position 51 mm)	75		
Figure I differen	F.9 – Frequency spectrum of the displacement waveform (lower curve) and the tiated displacement waveform (upper curve)	75		
Figure F membra to 60 M	7.10 – Sensitivity of a 0,2 mm active element diameter of a 9 μ m bilaminar ine hydrophone determined at 5 MHz intervals over the frequency range 5 MHz Hz	76		
Figure (transdu	G.1 – Coordinates of a field point P in the near field of a plane-circular source cer of radius a_{t}	84		
Figure I hydroph	.1 – Phase of end-of-cable open-circuit sensitivity for two membrane	92		
Figure I needle	.2 – Phase of end-of-cable open-circuit sensitivity for a 0,2 mm diameter hydrophone	94		
Figure ł	K.1 – Experimental set-up with a twisting reflector [22]	102		
Figure k	(.2 – Experimental set-up with a translational reflector [23]	102		
Figure	(3 - Experimental set up with a translational auxiliary transducer [24]	102		
Figure 1	C_{A} = Delationship of C and θ_{A} (°) for several values of I	105		
rigure i	$x_{4} - relationship of G_{c}$ and $\sigma_{m}()$ for several values of ka_{h}	105		

Table 1 – List of typical uncertainty values (for 95 % coverage) obtained by the calibration methods specified in this document and for the frequency range listed	26
Table E.1 – Speed of sound c [54],[55] and specific acoustic impedance, ρc , as a function of temperature, for propagation in water	60
Table G.1 – Temporal waveform and hydrophone position concepts described in Annex G	78
Table I.1 – Example of uncertainties (where a coverage factor, $k = 2$, is used) for a HTDS phase calibration of a needle hydrophone with a diameter of 0,2 mm, expressed at a confidence level of 95 %	92
Table K.1 – Values of the correction coefficient $G_{c}(ka_{h}, \theta_{m})$ for the spatial average	
effect of the free-field acoustic pressure over the hydrophone surface if it were removed	. 105

iTeh Standards (https://standards.iteh.ai) Document Preview

IEC 62127-2:2025

https://standards.iteh.ai/catalog/standards/iec/1e6f20cd-856f-470d-ac8b-ead402cd5d8d/iec-62127-2-2025

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ULTRASONICS – HYDROPHONES –

Part 2: Calibration for ultrasonic fields

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.

- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications
 - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
 - 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 62127-2 has been prepared by IEC technical committee 87: Ultrasonics. It is an International Standard.

This second edition cancels and replaces the first edition published in 2007, Amendment 1:2013 and Amendment 2:2017. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) the upper frequency limit of 40 MHz has been removed;
- b) hydrophone sensitivity definitions have been changed to recognize sensitivities as complexvalued quantities;
- c) directional response measurement and effective size determination procedures have been updated in 12.5.1 to align with recent changes in IEC 62127-3;

- d) Annex F has been amended to comprise a calibration technique for high-frequency complexvalued calibration;
- e) the reciprocity method description in Annex K was extended to also comprise focusing transducers;

The text of this International Standard is based on the following documents:

Draft	Report on voting
87/878/FDIS	87/884/RVD

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

A list of all parts of IEC 62127 series, published under the general title *Ultrasonics* – *Hydrophones,* can be found on the IEC website.

NOTE Terms in **bold** in the text are defined in Clause 3.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn, or

IEC 62127-2:2025

https://standards/iec/1e6f20cd-856f-470d-ac8b-ead402cd5d8d/iec-62127-2-2025

IMPORTANT – The "colour inside" logo on the cover page of this document indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

INTRODUCTION

The spatial and temporal distribution of acoustic pressure in an ultrasonic field in a liquid medium is commonly determined using miniature ultrasonic **hydrophones**. These devices are not absolute measurement instruments and it is important that they are calibrated. This part of IEC 62127 specifies the calibration methods to use in determining the response of a **hydrophone** in the ultrasonic range, i.e. above 50 kHz. The main **hydrophone** application in this context lies in the measurement of ultrasonic fields emitted by medical diagnostic equipment in water. It is important to understand **hydrophone** behaviour over a wide frequency band in order to reliably characterize the acoustic parameters of the applied acoustic field. In particular, the frequency range above 15 MHz is important to fully characterize this equipment, primarily due to the increased appearance of high-frequency components in the ultrasonic signals, caused by nonlinear propagation. In addition, the number of medical ultrasonic systems that use frequencies above 15 MHz, particularly intra-operative probes, is growing. It has turned out in recent years that the **hydrophone** response below 0,5 MHz is also important in order to reliably determine the peak-negative (rarefactional) acoustic pressure.

While the term **"hydrophone"** can be used in a wider sense, it is understood here as referring to miniature piezoelectric **hydrophones**. It is this instrument type that is used today in various areas of medical ultrasonics and, in particular, to characterize quantitatively the field structure of medical diagnostic instruments [1]¹. With regard to other pressure sensor types, such as those based on fibre optics, some of the requirements of this document are applicable to these as well but others are not. If in the future these other **"hydrophone"** types gain more importance in field measurement practice, their characteristics and calibration will be dealt with in a future edition of IEC 62127-2 or in a separate part of IEC 62127.

NOTE 1 This document covers the ultrasonic frequency range, from 50 kHz to an upper frequency of 100 MHz. Not all techniques described are applicable to the full frequency range. Standards dealing with **hydrophone** properties (IEC 62127-3) and **hydrophone** use (IEC 62127-1) are being maintained in parallel. This will eventually lead to unified standards covering the whole field of practical **hydrophone** application.

NOTE 2 **Hydrophone** calibration in the lower ultrasonic and in the underwater sound frequency range is particularly addressed in the IEC 60565 series [2],[3].

EC 62127-2:2025

https://standards.iteh.ai/catalog/standards/iec/1e6f20cd-856f-470d-ac8b-ead402cd5d8d/iec-62127-2-2025

¹ Numbers in square brackets refer to the Bibliography.

ULTRASONICS – HYDROPHONES –

Part 2: Calibration for ultrasonic fields

1 Scope

This part of IEC 62127 specifies:

- absolute hydrophone calibration methods;
- relative (comparative) hydrophone calibration methods.

Recommendations and references to accepted literature are made for the various relative and absolute calibration methods in the frequency range covered by this document.

This document is applicable to

 hydrophones used for measurements made in water and in the ultrasonic frequency range 50 kHz to 100 MHz;

NOTE 1 Although some physiotherapy medical applications of medical ultrasound are developing which operate in the frequency range 40 kHz to 100 kHz, the primary frequency range of diagnostic imaging remains above 2 MHz. It has recently been established that, even in the latter case, the **hydrophone** response at substantially lower frequencies can influence measurements made of key acoustic parameters [4].

NOTE 2 Calibration methods for underwater acoustics **hydrophones** applicable in the frequency range from 200 Hz to 1 MHz are available in IEC 60565-1 [2], and for frequencies from 0,01 Hz to several kilohertz in IEC 60565-2 [3].

 hydrophones employing piezoelectric sensor elements, designed to measure the pulsed wave and continuous wave ultrasonic fields generated by ultrasonic equipment;

NOTE 3 Some **hydrophones** can have non-circular active elements, arising from slight deviations from a circular structure caused, for example, by electrode structure; or, conversely, the active elements can actually be squares. It is important in these cases to pay special attention to the **directional response** and to the effective radii of the active element through various axes of rotation.

• hydrophones with or without a hydrophone pre-amplifier.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 61161, Ultrasonics – Power measurement – Radiation force balances and performance requirements

IEC 61689, Ultrasonics – Physiotherapy systems – Field specifications and methods of measurement in the frequency range 0,5 MHz to 5 MHz

IEC 62127-1, Ultrasonics – Hydrophones – Part 1: Measurement and characterization of medical ultrasonic fields

IEC 62127-3:2022, Ultrasonics – Hydrophones – Part 3: Properties of hydrophones for ultrasonic fields

3 Terms and definitions

For the purposes of this document, the terms and definitions given in IEC 62127-1, IEC 62127-3 and the following apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- IEC Electropedia: available at https://www.electropedia.org/
- ISO Online browsing platform: available at https://www.iso.org/obp

3.1

acoustic centre

point on or near a transducer from which the spherically divergent sound waves emitted by the transducer, and observable at remote points, appear to diverge

Note 1 to entry: This point is the boundary between the near field and the far field.

Note 2 to entry: In this region, the sound field has plane wave fronts changing to spherical wave fronts with divergence.

3.2

beam axis

straight line that passes through the **beam centrepoints** of two planes perpendicular to the line which connects the point of maximal **pulse-pressure-squared integral** with the centre of the **external transducer surface**

Note 1 to entry: The location of the first plane is the location of the plane containing the maximum **pulse-pressure-squared integral** or, alternatively, is one containing a single main lobe which is in the focal Fraunhofer zone. The location of the second plane is as far as is practicable from the first plane and parallel to the first with the same two orthogonal scan lines (*x* and *y* axes) used for the first plane.

Note 2 to entry: In a number of cases, the term **pulse-pressure-squared integral** is replaced in the above definition by any linearly related quantity, for example

https: a) in the case of a continuous wave signal the term **pulse-pressure-squared integral** is replaced by mean square 2025 acoustic pressure as defined in IEC 61689,

b) in cases where signal synchronization with the scanframe is not available the term **pulse-pressure-squared** integral may be replaced by temporal average intensity.

Note 3 to entry: See IEC 62127-1:2022, Figure 1.

[SOURCE: IEC 62127-1:2022, 3.8, modified – In the definition, "aperture" has been replaced with "surface".]

3.3

beam centrepoint

position determined by the intersection of two lines in the same beam area plane xy passing through the **beamwidth midpoints** of two orthogonal planes, xz and yz, perpendicular to their respective **beamwidth** lines

[SOURCE: IEC 62127-1:2022, 3.9]