
Designation: E3080 − 19 An American National Standard

Standard Practice for
Regression Analysis with a Single Predictor Variable1

This standard is issued under the fixed designation E3080; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This practice covers regression analysis of a set of data
to define the statistical relationship between two numerical
variables for use in predicting one variable from the other.

1.2 The regression analysis provides graphical and calcula-
tional procedures for selecting the best statistical model that
describes the relationship and for evaluation of the fit of the
data to the selected model.

1.3 The resulting regression model can be useful for devel-
oping process knowledge through description of the variable
relationship, in making predictions of future values, in relating
the precision of a test method to the value of the characteristic
being measured, and in developing control methods for the
process generating values of the variables.

1.4 The system of units for this practice is not specified.
Dimensional quantities in the practice are presented only as
illustrations of calculation methods. The examples are not
binding on products or test methods treated.

1.5 This standard does not purport to address all of the
safety concerns, if any, associated with its use. It is the
responsibility of the user of this standard to establish appro-
priate safety, health, and environmental practices and deter-
mine the applicability of regulatory limitations prior to use.

1.6 This international standard was developed in accor-
dance with internationally recognized principles on standard-
ization established in the Decision on Principles for the
Development of International Standards, Guides and Recom-
mendations issued by the World Trade Organization Technical
Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:2

E178 Practice for Dealing With Outlying Observations

E456 Terminology Relating to Quality and Statistics
E2586 Practice for Calculating and Using Basic Statistics

3. Terminology

3.1 Definitions—Unless otherwise noted, terms relating to
quality and statistics are as defined in Terminology E456.

3.1.1 degrees of freedom, n—the number of independent
data points minus the number of parameters that have to be
estimated before calculating the variance. E2586

3.1.2 predictor variable, X, n—a variable used to predict a
response variable using a regression model.

3.1.2.1 Discussion—Also called an independent or explana-
tory variable.

3.1.3 regression analysis, n—a statistical procedure used to
characterize the association between two or more numerical
variables for prediction of the response variable from the
predictor variable.

3.1.3.1 Discussion—In this practice, only a single predictor
variable is considered.

3.1.4 residual, n—the observed value minus fitted value,
when a regression model is used.

3.1.5 response variable, Y, n—a variable predicted from a
regression model.

3.1.5.1 Discussion—Also called a dependent variable.

3.1.6 sample coeffıcient of determination, r2, n—square of
the sample correlation coefficient.

3.1.7 sample correlation coeffıcient, r, n—a dimensionless
measure of association between two variables estimated from
the data.

3.1.8 sample covariance, sxy, n—an estimate of the associa-
tion of the response variable and predictor variable calculated
from the data.

3.2 Definitions of Terms Specific to This Standard:
3.2.1 intercept, β0, n—of a regression model, the value of

the response variable when the value of the predictor variable
is equal to zero.

3.2.2 regression model parameter, n—a descriptive constant
defining a regression model that is to be estimated.

3.2.3 residual standard deviation, σ, n—of a regression
model, the square root of the residual variance.

1 This practice is under the jurisdiction of ASTM Committee E11 on Quality and
Statistics and is the direct responsibility of Subcommittee E11.10 on Sampling /
Statistics.
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3.2.4 residual variance, σ2, n—of a regression model, the
variance of the residuals (see residual).

3.2.5 slope, β1, n—of a regression model, the incremental
change in the response variable due to a unit change in the
predictor variable.

3.3 Symbols:

b0 = intercept parameter estimate (5.5.1)
b1 = slope parameter estimate (5.5)
b11 = curvature parameter estimate (8.1.1.1)
β0 = intercept parameter in model (5.3.1)
β1 = slope parameter in model (5.3.1)
β11 = curvature parameter in model (5.3.3)
E = general point estimate of a parameter (5.7)
ei = residual for data point i (5.5.2)
ε = error term in model (5.4)
F = F statistic (6.5.2)
h = index for predicting any value in data range

(6.4.3)
i = index for a data point (5.2)
L = lower confidence limit (5.7.2)
λ = Box-Cox parameter (A1.5.4)
n = number of data points (5.2)
p = number of parameters in regression model (5.7)
r = correlation coefficient (6.3.2.1)
r2 = coefficient of determination (6.3.2.2)
S(b0,b1) = sum of squared deviations of Yi to the regression

line (A1.1.2)
sb1 = standard error of slope estimate (6.4.1)
sb0 = standard error of intercept estimate (6.4.2)
sE = general standard error of a point estimate (5.7)
σ = residual standard deviation (5.4.1)
s = estimate of σ (6.2.6)
σ2 = residual variance (5.4.1)
s2 = estimate of σ2 (6.2.6)
sX

2 = variance of X data (A1.2.1)
sY

2 = variance of Y data (A1.2.1)
SXX = sum of squares of deviations of X data from

average (6.2.3)
SXY = sum of cross products of X and Y from their

averages (6.2.3)
sXY = sample covariance of X and Y (A1.2.1)
sŶh = standard error of Ŷh (6.4.3)
sŶh~ind!

= standard error of future individual Y value (6.4.4)
SYY = sum of squares of deviations of Y data from

average (6.2.3)
t = Student’s t distribution (5.7)
U = upper confidence limit (5.7.2)
X = predictor variable (5.1)
X̄ = average of X data (6.2.3)
Xh = general value of X in its range (6.4.3)
Xi = value of X for data point i (5.2)
Y = response variable (5.1)
Ȳ = average of Y data (6.2.3)
Ẏ = geometric mean of Y data (A1.5.4)
Y ' = transformed Y (A1.5.2)
Ŷh~ind!

= predicted future individual Y for a value Xh (6.4.4)
Yi = value of Y for data point i (5.2)
Ŷh

= predicted value of Y for any value Xh (6.4.3)
Ŷ i

= predicted value of Y for data point i (5.5.1)

3.4 Acronyms:
3.4.1 ANOVA, n—analysis of variance

3.4.2 df, n—degrees of freedom

3.4.3 LOF, n—lack of fit

3.4.4 MS, n—mean square

3.4.5 MSE, n—mean square error

3.4.6 MSR, n—mean square regression

3.4.7 MST, n—mean square total

3.4.8 PE, n—pure error

3.4.9 SS, n—sum of squares

3.4.10 SSE, n—sum of squares error

3.4.11 SSR, n—sum of squares regression

3.4.12 SST, n—sum of squares total

4. Significance and Use

4.1 Regression analysis is a procedure that uses data to
study the statistical relationships between two or more vari-
ables (1, 2).3 This practice is restricted in scope to consider
only a single numerical response variable and a single numeri-
cal predictor variable. The objective is to obtain a regression
model for use in predicting the value of the response variable
Y for given values of the predictor variable X.

4.2 A regression model consists of: (1) a regression function
that relates the mean values of the response variable distribu-
tion to fixed values of the predictor variable, and (2) a
statistical distribution that describes the variability in the
response variable values at a fixed value of the predictor
variable.

4.2.1 The regression analysis utilizes either experimental or
observational data to estimate the parameters defining a
regression model and their precision. Diagnostic procedures
are utilized to assess the resulting model fit and can suggest
other models for improved prediction performance.

4.3 The information in this practice is arranged as follows.
4.3.1 Section 5 gives a general outline of the steps in the

regression analysis procedure. The subsequent sections cover
procedures for estimation of specific regression models.

4.3.2 Section 6 assumes a straight line relationship between
the two variables. This is also known as the simple linear
regression model or a first order model. This model should be
used as a starting point for understanding the XY relationship
and ultimately defining the best fitting model to the data.

4.3.3 Section 7 considers a proportional relationship be-
tween the variables, where the ratio of one variable to the other
is constant. The intercept is constrained to be zero. This model
is useful for single point calibration, where a reference material
is run periodically as a standard during routine testing to
correct for drift in instrument performance over a given range
of test results.

4.3.4 Section 8 discusses a regression function that consid-
ers curvature in the XY relationship, the second order polyno-
mial model.

3 The boldface numbers in parentheses refer to a list of references at the end of
this standard.
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4.3.5 Annex A1 provides supplemental information of a
more mathematical nature in regression.

4.3.6 Appendix X1 lists calculations for the curvature
model estimates and exhibits a worksheet for these calcula-
tions.

5. Regression Analysis Procedure for a Single Predictor
Variable

5.1 Choose the response variable Y and the predictor
variable X. The predictor variable X is assumed to have known
values with little or no measurement error. For given values of
X, the response variable Y has a distribution of values repre-
senting the random effect of measurement errors, and these
distributions are defined within a given range of the X values.

5.2 Obtain a data set consisting of n pairs of values
designated as (Xi, Yi), with the sample index i ranging from 1
through n. The data can arise in two different ways. Observa-
tional data consists of X and Y values measured on a set of n
random test units. Experimental data consists of Y values
measured on n test units with X values set at controlled values
in an experimental study.

5.2.1 When designing an experiment for defining the XY
association some considerations are:

(1) Range of X values.
(2) Number of distinct X values.
(3) Spacing of X values.
(4) Number of Y observations for each X value.

The answers depend on the objectives of the investigation,
whether determining the nature of the regression function,
estimating the slope or intercept of the simple linear model, or
estimating the measurement error of Y, as well as other
objectives.

5.2.1.1 The X values should cover the entire range of
interest. Extrapolation beyond the range of observed X values
may fail due to expanding estimation error outside the range
and the uncertainty of whether the model gives an adequate
description of the XY relationship outside the range. When
inference is required for the Y intercept (the value of Y when X
is zero) the range of X should extend down to zero or near zero.

5.2.1.2 Two X levels are necessary when the objective is to
determine if there is an effect of X on Y, and to give an estimate
of the effect (slope). Three X levels are necessary to evaluate
any curvature in the relationship. Four or more X levels give
better definition of the model shape, particularly if there is a
possible asymptote or a threshold in the relationship. The X
levels should be equally spaced. If X is transformed, such as to
logarithms, the equal spacing should be with respect to the
transformed X.

5.2.1.3 Usually the number of Y observations should be
equal at each X level. When the objective is to estimate Y
variance or evaluate variance constancy, then at least four
observations are recommended at each X level.

5.3 Choose a regression function that fits the data. A scatter
plot of the data is recommended for a visual look at the XY
relationship, and most computer packages have this as an
option. This is a plot of points on the XY plane having a value
of Y (on the vertical axis) and a value of X (on the horizontal
axis) for each data pair, where it is useful for evaluating the
quality of the data and suggesting an appropriate regression
function to define the XY relationship. Fig. 1 gives examples of
four scatter plots that illustrate different situations.

5.3.1 Fig. 1A shows a cluster of points that appear to be
elongated in a particular direction along a straight line that does
not pass through the origin (X=0, Y=0). This pattern suggests

FIG. 1 Scatter Plots
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the straight line regression function Y5β01β1X. The two
parameters for this function are the intercept β0 and the slope
β1. The slope is the amount of incremental change in Y units for
a unit change in X. The intercept is the value of Y when X = 0.
Both parameters are necessary to define this regression func-
tion.

5.3.2 Fig. 1B suggests a straight line that appears to go
through the origin, thus Y is proportional to X, and the
regression function is Y5β1X. An intercept term is not required
because the Y intercept is constrained to equal zero, that is, the
line goes through the origin.

5.3.3 Fig. 1C indicates curvature in the relationship, and
there are several regression functions that can be used. For
slight curvature, a simple model is to add a second order (X2)
term to the straight line function as Y5β01β1X1β11X

2.

5.3.4 Fig. 1D shows data with increasing variability with
larger mean values. This suggests the need for a weighted
regression procedure discussed in A1.4.2.

5.3.5 Data points appearing outside the swarm of data
(outliers) can have an adverse effect on estimation of regres-
sion function parameters. For the straight-line function, outliers
at the extremes of the X range can greatly affect the estimate of
the slope and intercept parameters, and outliers in the middle of
the range tend to affect the intercept estimate more than the
slope. Outliers can be formally identified by statistical proce-
dures (see Practice E178).

5.3.6 A special situation occurs when there are two data
swarms separated by a gap. This may indicate that there were
two sources of data with different values of a second lurking
predictor variable. Such a data set consists essentially of two
data points in cases of a large gap.

5.4 Define the regression model by adding an error term to
the regression function that describes the variation in Y through
a statistical distribution. For example, the simple linear regres-
sion model using the regression function in 5.3.1 is then stated
as Y5β01β1X1ε, where ɛ is a random error having a distribu-
tion with mean zero and standard deviation σ (variance σ2).

5.4.1 The distribution for ɛ can often be assumed to have a
normal (Gaussian) distribution with a constant standard devia-
tion over the range of X. Thus, the distribution of Y at a given
X is a normal distribution with a mean of β01β1X and a
standard deviation of σ. An example of such a linear regression
model is shown in Fig. 2 over a range of X from 0 to 40 X units.
Normal distributions of response Y with σ = 1.3 Y units are
depicted at X = 10, 20, and 30 X units.

5.4.2 Distributions other than the normal distribution may
also be considered, depending on knowledge of the application.
For example, low microbial counts may use a Poisson error
distribution.

5.5 Parameter estimation uses the data set to provide the
parameter estimates. For the simple regression functions de-
scribed above, the procedures used are given in the following
sections. In this practice, the parameters are lower-case Greek
letters and the estimates are the corresponding lower-case
Roman letters. For example, the estimate of the slope param-
eter β1 is b1.

5.5.1 The fitted values of Y, denoted Ŷ i (read Y-hat), for each
data point (Xi, Yi) are calculated from the estimated regression
function. For the straight-line model, the fitted values of Yi are
Ŷ i5b01b1X1. The right-hand function defines the regression
line, which may be shown on the scatter plot of the data to
evaluate model fit.

5.5.2 The estimates of the error term values ɛ are the
residuals ɛi, calculated as ei5Yi2Ŷ i, and these are used to
estimate the standard deviation parameter σ. Note that the
residual values are the vertical distances of the points from the
regression line.

5.6 Evaluation of the regression model is performed to
diagnose departure from model assumptions, such as model fit
to the data, constancy of variance over the range of X, and
conformance to the assumed error distribution. Residual plots
are useful for these diagnostics.

5.6.1 A plot of the residuals against their X values (or

FIG. 2 Graphical Depiction of a Straight Line Regression Model
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equivalently, against their Ŷ i values) will detect certain depar-
tures from the assumptions. Residuals may also be plotted
against time of testing (if available) or against another known
variable. Fig. 3 shows some of these patterns and discusses
remedies for these departures. (The horizontal line on the plots
indicates a value of zero for the average of the residuals.)

(1) Plot A – the desired horizontal pattern – indicates no
model deficiencies

(2) Plot B – increasing variance with X, consider weighted
regression (see A1.4.2) or data transformations (see A1.5)

(3) Plot C – curvature in the relationship, consider adding
a quadratic term or using a nonlinear model (see Section 8)

(4) Plot D – possible effect of time order of testing or the
effect of another variable denoted as T

5.6.2 Plotting the residuals against a vertical scale of the
cumulative percentage of the normal distribution checks the
assumption of normality in the model. The fitted cumulative
normal distribution from the data is shown as a straight line on
the plot if the residuals fit a normal distribution. Computer
packages provide these plots and can also perform a more
rigorous statistical test for normality. If the plot indicates a
curve, a data transformation may be required to achieve a
normal distribution.

5.6.3 Outlier testing in regression analysis takes two forms.
Outlier testing can be performed upon any sets of multiple Y’s
collected at each unique value of X studied. Additionally,
outlier analysis can be performed on the entire set of residuals.
In the latter case, finding an outlier could indicate an issue in
either the X or Y value of the point in question or it may
indicate other issues with the regression analysis.

5.7 Use of the model for interval estimates of regression
parameters and predicted Y values.

5.7.1 The estimates of model parameters and fitted Y values
are point estimates. For example, the estimate of the slope
parameter β1 is the estimate b1 that has been calculated from
the data. To give a sense of the precision for these estimates,
interval estimates, or confidence intervals, can be provided. A
general form for the confidence interval for a general point
estimate E is:

E6tsE (1)

where sE is the standard error of the estimate and t is a
tabulated multiplier that is dependent upon the degrees of
freedom of the standard error and the desired confidence level,
stated as a percentage. Thus, we may state that the true value
of the parameter being estimated lies within the confidence
interval at a given confidence level. The degrees of freedom for
the standard error are generally n – p, where p is the number of
parameters in the regression model.

5.7.2 To calculate these interval estimates, the form of the
statistical distribution for Y is required, and the normal distri-
bution is often assumed. The widths of the interval estimates,
given here as two-sided confidence intervals, are dependent on
(1) the standard errors of the estimates, and (2) the level of
confidence. The standard errors depend on the number of data
pairs n and the values of the Xi.

The confidence level is defined as 100(1 – α) %, where α is
the probability that the confidence interval does not contain the
parameter value. For example, α = 0.05 (or a risk of 5 %
non-coverage) corresponds to a confidence level of 95 %,
which shall be used for the examples in this practice. The value
of t is the upper (1 – α/2)th quantile of the Student’s t
distribution with n – p degrees of freedom, for a confidence
level of 100(1 – α) %. Values of t are found in statistical texts
and in commercial statistical software packages.

FIG. 3 Residual Plots – Some Patterns
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5.7.3 The confidence interval can also be stated as the
interval (L, U) between lower (L) and upper (U) confidence
limits for the parameter being estimated. Practice E2586
provides discussion of confidence intervals, standard error, and
degrees of freedom.

6. Simple Linear Regression Analysis

6.1 Simple Linear Regression Model:
6.1.1 This model defines the functional relationship be-

tween X and Y as a straight line in the XY plane.
6.1.2 The regression function for the straight line relation-

ship is:

Y 5 β01β1X (2)

where the two parameters for the function are the intercept
β0 and the slope β1.

The intercept is the value of Y when X = 0, but this parameter
may not be of practical interest when the range of X is far
removed from zero. The slope is the amount of incremental
change in Y units for a unit change in X.

6.1.3 The statistical distribution for Y is usually assumed to
be a normal (Gaussian) distribution having a mean of β0

1β1X with a standard deviation σ. The simple linear regression
model is then stated as:

Y 5 β01β1X1ε (3)

where ε is a random error that is normally distributed with
mean zero and standard deviation σ (variance σ2).

6.2 Estimating Regression Model Parameters:
6.2.1 The model parameters β0, and β1, are estimated from

a sample of data consisting of n pairs of values designated as
(Xi, Yi), with the sample number i ranging from 1 through n.
The data can arise in two different ways. Observational data
consists of X and Y values measured on a set of n random
samples. Experimental data consists of Y values measured on n
experimental units with X values set at fixed values. In both
cases the Y values may have measurement error, but the X
values are assumed known with negligible measurement error.

6.2.2 The regression line parameters β0, and β1 are esti-
mated by the method of least squares, which finds their
corresponding estimates b0 and b1 that minimize the sum of the
squares of the vertical distances between the Yi values and their
respective line values at Xi. (For a further discussion of the
least squares method, see A1.1.2.)

6.2.3 Calculate the following statistics from the X and Y
values in the data set.

6.2.3.1 Calculate the averages of X and Y:

X̄ 5
(
i51

n

Xi

n
(4)

Ȳ 5
(
i51

n

Yi

n
(5)

6.2.3.2 Calculate the sums of squared deviations SXX and
SYY of X and Y from their respective averages and the sum of
cross products SXY of the X and Y deviations from their
averages:

SXX 5 (
i51

n

~Xi 2 X̄! 2
(6)

SYY 5 (
i51

n

~Yi 2 Ȳ! 2
(7)

SXY 5 (
i51

n

~Xi 2 X̄!~Yi 2 Ȳ! (8)

SXX is a known fixed constant. SYY and SXY are random
variables.

6.2.3.3 The least squares solution gives the parameter esti-
mates:

b1 5 SXY ⁄ SXX (9)

b0 5 Ȳ 2 b1X̄ (10)

6.2.4 The fitted values Ŷi for each data point Yi are calcu-
lated from the estimated regression function as:

Ŷ i 5 b01b1Xi (11)

6.2.5 The residual ei is the difference between the response
data point Yi and its fitted value Ŷ i:

ei 5 Yi 2 Ŷ i (12)

Residuals are graphically the vertical distances on the scatter
plot between the response data points Yi and the estimated
regression line.

6.2.6 The estimates s2 of the variance σ2 and s of the
standard deviation σ of the Y distribution are calculated as the
sum of the squared residuals divided by their degrees of
freedom:

s2 5
(
i51

n

ei
2

~n 2 2!
5

(
i21

n

~Yi 2 Ŷ i!
2

~n 2 2!
(13)

s 5 =s2 (14)

These estimates have n – 2 degrees of freedom because of
prior estimation of two parameters, the slope and intercept of
the line, which removed two degrees of freedom from the data
set of n data points prior to calculation of the residuals.

6.2.7 Example—A data set from Duncan, Ref. (3) lists
measurements of shear strength (inch-pounds) and weld diam-
eter (mils) measured on 10 random test specimens, so this is an
observational data set with n = 10 pairs. Regression analysis
will be used to investigate the relationship between weld
diameter and shear strength, with the objective of predicting
shear strength Y from weld diameter X. The weld diameters are
considered to be measured with small error. The data are listed
in Table 1.

6.2.7.1 The scatter plot for this example is shown in Fig. 4.
The shear strength appears to be increasing in a linear fashion
with weld diameter. There is some scatter but no apparent
outlying data points.

6.2.7.2 The calculations, with equation numbers for each
calculation, are shown in Table 1. The averages of X and Y are
respectively 233.9 mils and 975.0 inch-pounds. The deviations
of X and Y from their averages are listed for each observation,
and these are used to calculate values of the statistics SXX, SYY,
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and SXY. The least squares estimates of the slope and intercept
are calculated, resulting in the estimated model equation giving
fitted values Ŷ i5-569.4716.898 Xi, and these values are listed for
each observation. The residuals ei5Yi5Ŷ i are also listed for
each observation. Estimates of the variance and standard
deviation of the Y distribution are calculated from squares of
the residuals. The estimated standard deviation is 99.90 inch-
pounds.

6.2.7.3 The least squares straight line is depicted with the
scatter plot in Fig. 4, and indicates that a straight line model
appears to give a reasonable fit to this data set. Some additional
comments from Table 1 are:

(1) The least squares estimated model equation is Y =
–569.47 + 6.898 X. Clearly the negative intercept is not a
plausible value for shear strength. This is apparently due to the
fact that the data are so far removed from the origin (0, 0) that
the estimate is poorly defined. It is also possible that there is
some nonlinear behavior in the relationship approaching the
origin.

(2) The averages of the deviations of X and Y from their
averages are zero, and the average of the residuals are zero.
These results follow from the property that sums of deviations
from averages are zero.

(3) The average of the fitted values, Ŷ i, is the same as the
average of the Y data.

6.3 Evaluation of the Model:
6.3.1 This section discusses model evaluation through mea-

sures of association and plots of the residuals to check for
departures from the model assumptions and the presence of
data outliers.

6.3.2 Measures of Association Between X and Y:
6.3.2.1 The sample correlation coeffıcient is a dimensionless

statistic intended to measure the strength of a linear relation-
ship between two variables. The estimated correlation
coefficient, r, from a set of paired data (Xi, Yi) is calculated
from three statistics, SXX, SYY, and SXY:

r 5
SXY

=SXXSYY

(15)

The value of the correlation coefficient ranges between –1
and +1. The sign of r is the same as the sign of slope estimate
b1. Values of r near 0 indicate a weak or nonexistent straight
line relationship. An r value closer to either +1 or –1 indicates
that a straight line provides an ever stronger explanation of the
relationship. Fig. 5 shows examples of scatter plots that appear
for selected values of r.

TABLE 1 Data and Calculations for Straight Line Regression Model Example

Sample, i Xi Yi Xi2X̄ Yi2Ȳ Ŷ i
ei Statistics Results EQ

1 190 680 –33.9 –295.0 741.2 –61.2 SXX 5268.90 Eq 6
2 200 800 –23.9 –175.0 810.1 –10.1 SYY 330550.00 Eq 7
3 209 780 –14.9 –195.0 872.2 –92.2 SXY 36345.00 Eq 8
4 215 885 –8.9 –90.0 913.6 –28.6 Slope, b1 6.8980 Eq 9
5 215 975 –8.9 0.0 913.6 61.4 Intercept, b0 –569.47 Eq 10
6 215 1025 –8.9 50.0 913.6 111.4 Variance, s2 9980.16 Eq 13
7 230 1100 6.1 125.0 1017.1 82.9 St. Dev., s 99.90 Eq 14
8 250 1030 26.1 55.0 1155.0 –125.0
9 250 1300 26.1 325.0 1155.0 145.0

10 265 1175 14.1 200.0 1258.5 –83.5

X̄ Ȳ
Average 223.9 975.0 0.0 0.0 975.0 0.0
Equation Eq 4 Eq 5 Eq 8 Eq 9

FIG. 4 Scatter Plot of Data with Fitted Linear Model

FIG. 5 Typical Scatter Plots for Selected Values of the Correlation
Coefficient, r
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6.3.2.2 The coeffıcient of determination is the squared value
of the correlation coefficient with symbol r2. It measures the
proportion of variation in the Y data explained by the predictor
variable X.

6.3.2.3 For the example the sample correlation coefficient
is:

r 5
36345

=~330550!~5268.9!
5 0.8709

The sample coefficient of determination for the example is r2

= 0.87092 = 0.7585. This means that approximately 76 % of the
variance in Y is explained by the straight line model (see 6.5.2).
These measures are often used as acceptance criteria for
linearity; but this usage should be discouraged, because these
statistics are not absolute measures of linearity and should be
used for comparative purposes only.

6.3.3 Residual Plots:
6.3.3.1 Plots of residuals ei are used for evaluating outliers

in the data and various model assumptions over the range of X,
including normality, constant error variance, linearity of the
regression function, and independence of the error terms.
These check for outliers in the data, constancy of Y distribution
variance, curvature of the regression function, lack of indepen-
dence of errors, and normality of the Y distribution.

6.3.3.2 The residuals dot plot is a useful diagnostic for
finding outliers, which may be harder to detect from the data
set itself. Large outliers can distort the estimate of the
regression line because the least squares procedure will tend to
move the line towards the outlier, thus masking it. Formal
outlier testing procedures can be found in Practice E178.

A residuals dot plot for the example is shown in Fig. 6. There
are no apparent outliers at each end of the plot.

Additional graphics for this purpose are histograms, “stem
and leaf” plots, and “box and whiskers” plots. (See Practice
E2586.)

The plot of residuals against X in Fig. 7 indicates no
discernable pattern, such as curvature or increasing scatter
versus X, but this is a relatively small data set.

6.3.3.3 Plotting the residuals against a vertical scale of the
cumulative percentage of the normal distribution checks the
assumption of normality in the model. The fitted cumulative
normal distribution from the data is shown as a straight line on
the plot if the residuals fit a normal distribution. Computer
packages provide these plots and can also perform a more
rigorous statistical test for normality.

For the example, the residual plot against X in Fig. 8
indicates an approximate straight line pattern for the example,
supporting a normal distribution for the residuals.

6.4 Interval Estimates of Regression Parameters and Pre-
dicted Y Values—This section shows the calculations for the
interval estimates for b0 and b1 of their respective model
parameters β0 and β1 for the simple linear model (see 5.7 for an
introduction to this concept). Also given are calculations for

certain predicted values of Y at given values of X. For these
calculations the estimate s of the standard deviation σ of the Y
distribution is required with its degrees of freedom n – 2. Also
required is the choice of the confidence level, and for these
calculations a 95 % confidence interval will be used. In the
example, the standard deviation estimate is s = 99.9 inch-
pounds with n – 2 = 10 – 2 = 8 degrees of freedom. The value
of t for a 95 % two-sided confidence interval with 8 degrees of
freedom is 2.306.

6.4.1 Confidence Interval for the Slope—The standard error
for the slope estimate is:

sb1 5 s ⁄ =SXX (16)

From the example:

sb1 5 99.9 ⁄ =5268.9 5 1.376

The confidence interval for the slope β1 is calculated as:

b1 6 tsb1 (17)

From the example, the 95 % confidence interval is:

6.898 6 ~2.306!~1.376! 5 6.898 6 3.173

or ~3.725, 10.071!

If the slope confidence interval includes zero, this supports
the assertion that there is no relationship between X and Y at the
given level of confidence. In this example, the slope confidenceFIG. 6 Dot Plot of Residuals

FIG. 7 Plot of Residuals versus X — Duncan Example

FIG. 8 Normal Probability Plot of Residuals
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interval does not include zero, thus supporting the existence of
a statistical relationship between Y and X.

6.4.2 Confidence Interval for the Intercept—The standard
error for the intercept estimate is:

sb0 5 sŒ1
n

1
X̄2

SXX

(18)

From the example:

sb0 5 99.9Œ 1
10

1
223.92

5268.9
5 309.76

The confidence interval for the intercept β0 is calculated as:

b0 6 tsb0 (19)

In this example, the 95 % confidence interval is:

-597.5 6 ~2.306!~309.76! 5 -569.5 6 714.3

or ~-1283.8, 144.8!

If the confidence interval includes zero, this technically
supports the assertion that the line may go through the origin
(0,0) at the given level of confidence. However, this use of the
confidence interval amounts to a rather large extrapolation
outside the range of the data, which explains the implausible
negative estimate mentioned in 6.2.7.3.

6.4.3 Confidence Interval for the Predicted Value of the
Mean Y at a Given X—The predicted value Ŷh for a mean
response of Y at Xh is:

Ŷh 5 b01b1Xh (20)

The index h is used instead of the index i because the
prediction is not necessarily from a value of X in the data set.

Predictions outside the range of X (extrapolation) should be
performed with caution, as the regression function may not be
valid outside this range.

The standard error for a mean Ŷh response at a value X = Xh

is:

sŶh
5 sŒ1

n
1

~Xh 2 X̄! 2

SXX

(21)

From the example, at Xh = 215 mils, the standard error is:

sŶh
5 99.9Œ 1

10
1

~215 2 223.9!2

5268.9
5 33.88

The confidence interval for the mean Y response at a value X
= Xh is calculated as:

Ŷh6ts Ŷh
(22)

From the example, the 95 % confidence interval for the
average predicted value of 913.6 inch-pounds is:

913.6 6 ~2.306!~33.88! 5 913.6 6 78.13

or ~835.47, 991.73!

Thus the expected mean response of Y at X = 215 falls
between 835.47 and 991.73 with 95 % confidence.

6.4.4 Confidence Interval for the Predicted Value of a
Future Value Y at a Given X—The standard error for an

individual response Ŷh~ind!
at X = Xh is calculated as:

sŶh~ind!
5 sŒ11

1
n

1
~Xh 2 X̄! 2

SXX

(23)

From the example, at Xh = 215 mils, the standard error is:

sŶh~ind!
5 99.9Œ11

1
10

1
~215 2 223.9!2

5268.9
5 105.49 inch-pounds

The confidence interval for a future new Y response at a
value X = Xh is calculated as:

Ŷh~ind!
6ts Ŷh~ind!

(24)

This is known as a prediction interval, an interval estimate in
which would contain a future observation with a given prob-
ability based on the data set. Prediction intervals are wider than
confidence intervals because a prediction interval applies to an
individual value whereas the confidence interval applies to a
mean response. In the example, the prediction interval at 95 %
confidence for the predicted value of the response at a weld
diameter of 215 mils is:

913.6 6 ~2.306!~105.49! 5 913.6 6 243.26

or ~670.34, 1156.86!

6.4.5 An array of confidence intervals and prediction inter-
vals shown as bands around the regression line is depicted in
Fig. 9 for the example. The vertical intervals are narrowest at
the centroid, ~ X̄ , Ȳ! of the data and become wider as the
distance from the center increases. These bands are valid for a
single predictions only. Multiple predictions using the same
data set are discussed in A1.1.8.1. These bands can be useful in
setting manufacturing requirements; for example, the confi-
dence interval indicates that a minimum weld diameter of 200
mils would be required to obtain an average shear strength of
700 inch-pounds at 95 % confidence. The prediction interval
suggests that a minimum shear strength of 220 mils would be
necessary to guarantee that a single future item would have
meet that shear strength with 95 % confidence.

FIG. 9 Regression Plot with 95 % Confidence and
Prediction Intervals
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6.5 Analysis of Variance (ANOVA) Calculations:
6.5.1 Statistical analysis packages are often used for regres-

sion analysis. The output consists of the estimates of the
regression parameters, various plots, and an ANOVA table. The
calculations for the ANOVA table are shown in Table 2. This
section discusses the ANOVA procedure and its relation to
earlier calculations.

6.5.2 ANOVA partitions the total sum of squares in the Y
data, SST, into the residual sum of squares, SSE, and the
regression sum of squares, SSR. The degrees of freedom (df)
for these sums of squares are respectively n – 1, n – 2 and 1.
SST has been previously calculated as SYY in Eq 7, and SSE has
been previously calculated as the sum of the squared residuals,
the numerator of s2 in Eq 13. SSR is the sum of squares of
deviations of the fitted values from their average Ȳ, which
represents the variation removed from the Y data due to its
estimated relationship with X. SSR may also be equivalently
calculated as:

SSR 5 Σ~ Ŷ i 2 Ȳ! 2
5 b1

2Σ~Xi 2 X̄! 2
(25)

This expression enables calculation of the sums of squares
for regression and for error without first requiring calculation
of fitted values and residuals.

The mean squares are variances, each calculated as a sum of
squares divided by its degrees of freedom. The F statistic is the
ratio of the regression mean square to the residual mean square,
and is used to test the fit of the regression model, thus F =
MSR/MSE. MST is the variance of the Y data, see Eq A1.14.

The p-value is the probability of obtaining a slope estimate
as large as that obtained from the data, assuming that the true
slope is zero. Low values of p, such as p < 0.05, are used to
reject the condition that the true slope is zero, thus confirming
that a relationship that is either linear, or that has a statistically-
meaningful trend component, exists between X and Y.

6.5.3 The ANOVA table for the example is shown in Table
3. The F test indicated a high level of statistical significance for
the validity of the model with a low p value of 0.001. The
coefficient of determination r2 = SSR / SST = 250709 / 330550
= 0.7585, which agrees with the value in 6.3.2.3.

7. Zero Intercept Linear Model

7.1 An associated model often considered along with the
simple linear model is the model that constrains the intercept to
be zero. Thus Y is proportional to X throughout the range. This
model is useful in test methods where single-point calibration
is conducted periodically, due to minor instabilities in the
testing process. The regression model is:

Y 5 β1X1ε (26)

where the slope β1 is the single regression function param-
eter and ε is a random error term that is assumed to be
normally distributed with mean zero and variance σ2.

7.1.1 The slope estimate b1 is calculated as:

b1 5 (
i51

n

XiYi ⁄ (
i51

n

Xi
2 (27)

7.1.2 The fitted valuesŶi for each data point Yi are calculated
from the estimated regression function as:

Ŷ i 5 b1Xi (28)

7.1.3 The residual ei is the difference between the response
data point Yi and its fitted value Ŷ i.

ei 5 Yi 2 Ŷ i (29)

7.1.4 The estimates s2 of the variance σ2 and s of the
standard deviation σ of the Y distributions are calculated as the
sum of the squared residuals divided by their degrees of
freedom.

s2 5
(
i51

n

ei
2

~n 2 1!
5

(
i51

n

~Yi 2 Ŷ i!
2

~n 2 1!

(30)

s 5 =s2 (31)

These estimates have n – 1 degrees of freedom because of
prior estimation of the slope of the line, which removed one
degree of freedom from the data set of n data points prior to
calculation of the residuals.

7.1.5 The standard error for the slope estimate is:

Sb1 5 s ⁄ Œ(
i51

n

xi
2 (32)

The 100(1 – α)th two-sided confidence interval for the slope
β1 is calculated as:

b16tsb1 (33)

where t is the (1 – α/2)th quantile of the t distribution with
n – 1 degrees of freedom. The confidence bands for the line are
also straight lines with zero intercepts having slopes defined by
the confidence limits on the slope (see Fig. 11).

7.2 Example—An experiment was conducted to determine
an instrument response over a range of 0 to 10 mg/L of a
substance dissolved in a solvent. Five solution standards at 2,
4, 6, 8, and 10 mg/L concentrations were run in duplicate and
the results are shown in Fig. 10. A zero-intercept model was
considered because the data points appeared to lie in a straight
line that approached the origin.

TABLE 2 ANOVA Table Calculations

Source of Variation Degrees of Freedom Sum of Squares Mean Square F statistic p-value

Regression 1 SSR5ΣsŶ i 2 Ȳd2 MSR = SSR / 1 F = MSR / MSE p
Residual n – 2 SSE5ΣsŶ i 2 Ȳd2 MSE = SSE / n – 2
Total n – 1 SST5ΣsŶ i 2 Ȳd2 MST = SST / n – 1

TABLE 3 ANOVA Table for Example

Source df SS MS F P

Regression 1 250709 250709 25.12 0.001
Residual 8 79841 9980
Total 9 330550
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