

Edition 3.0 2023-07

INTERNATIONAL STANDARD

Optical fibres – Cut-off wavelength

IEC 60793-1-44:2023

https://standards.iteh.ai/catalog/standards/sist/ccb56d55-7c67-4c45-885f-807f0ef4af6d/iec-60793-1-44-2023

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2023 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Secretariat 3, rue de Varembé CH-1211 Geneva 20 Switzerland

Tel.: +41 22 919 02 11 info@iec.ch www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

IEC Products & Services Portal - products.iec.ch

Discover our powerful search engine and read freely all the publications previews. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 300 terminological entries in English and French, with equivalent terms in 19 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

Edition 3.0 2023-07

INTERNATIONAL STANDARD

Optical fibres Teh STANDARD PREVIEW

Part 1-44: Measurement methods and test procedures – Cut-off wavelength

IEC 60793-1-44:202

https://standards.iteh.ai/catalog/standards/sist/ccb56d55-7c67-4c45-885f-807f0ef4af6d/iec-60793-1-44-2023

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 33.180.10

ISBN 978-2-8322-7033-2

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

F	OREWO)RD	4		
1	Scop	e	6		
2	Norn	native references	6		
3	B Terms and definitions				
4	4 Background				
5					
6		rence test method			
7		aratus			
'	7.1	Light source			
	7.2	Modulation			
	7.3	Launch optics			
	7.4	Support and positioning apparatus			
	7.5	Deployment mandrel			
	7.5.1	General	9		
	7.5.2	2 Cable cut-off wavelength deployment, method A	9		
	7.5.3	Cable cut-off wavelength deployment, method B	9		
	7.5.4				
	7.6	Detection optics			
	7.7	Detector assembly and signal detection electronics			
	7.8	Cladding mode stripper.			
8		pling specimen			
	8.1	Specimen length			
_	8.2 _{ps:/}	Specimen end face			
9		edure			
	9.1	Positioning of specimen in apparatus			
	9.1.1	- 1			
	9.1.2				
	9.2	Measurement of output power			
	9.2.1				
	9.2.2 9.2.3	· ·			
1(8 Multimode-reference technique			
		Bend-reference technique			
	10.1 10.2	Multimode-reference technique			
1.		ping functions			
12	-	ults			
13		cification information	15		
		(normative) Requirements specific to method A – Cable cut-off wavelength, g uncabled fibre	16		
~(
	A.1	Specimen length			
•	A.2	Procedure – Position specimen on deployment mandrel	16		
Annex B (normative) Requirements specific to method B – Cable cut-off wavelength, λ_{CC} , using cabled fibre					
(
	В.1 в 2	Specimen length			
	B.2	Procedure – Position specimen on deployment mandrel	17		

Annex C (normative) Requirements specific to method C – Fibre cut-off wavelength, λ_{C}	18			
C.1	Specimen length	18			
C.2	Procedure – Position specimen on deployment mandrel	18			
Annex D (informative) Cut-off curve artifacts	20			
D.1	Description of curve artifacts	20			
D.2	Curve-fitting technique for artifact filtering	20			
D.2.1	Overview	20			
D.2.2	General	21			
D.2.3	Step 1: define the upper wavelength region	22			
D.2.4		22			
D.2.5	5 Step 3: calculate the deviation of the spectral transmittance from the linear fit	22			
D.2.6	S Step 4: determine the end wavelength of the transition region	23			
D.2.7	Step 5: determine the start wavelength of the transition region	23			
D.2.8	Step 6: characterize the transition region with the theoretical model	23			
D.2.9	Step 7: compute the cut-off wavelength, λ_{c}	24			
D.3	Fibre deployment method for artifact attenuation	25			
Bibliograp	hy	27			
Figure 1 -	- Cut-off measurement system block diagram	7			
Figure 2 -	- Deployment configuration for cable cut-off wavelength $\lambda_{ extsf{cc}}$, method A	9			
Figure 3 -	- Deployment configuration for cable cut-off wavelength $\lambda_{ extsf{CC}}$, method B	9			
Figure 4 -	- Standard deployment for fibre cut-off wavelength measurement	10			
Figure 5 -	- Cut-off wavelength using the bend-reference technique	11			
Figure 6 -	- Cut-off wavelength using the multimode-reference technique	12			
Figure 7 – Cable cut-off vs fibre cut-off for a specific fibre (multimode reference)					
Figure A.1 – Alternative cable cut-off deployment					
-	1 – Alternative fibre cut-off deployment – Sliding semi-circle				
•	2 – Alternative fibre cut-off deployment – Multi-bend				
•	3 – Alternative fibre cut-off deployment – Large curve				
•	1 – Cut-off curve with linear fit error (multimode reference)				
-	2 – Fibre cut-off curve fitting technique (multimode reference)				
-	3 – Curve fitting regions				
Figure D.4	4 – Fibre cut-off curve with artifacts (multimode reference)	25			
Figure D.	5 – Fibre cut-off curve with artifacts (bend reference)	25			
Figure D.6	δ – Fibre deployment with large diameter bends for mode filtering	26			
Figure D.7	7 – Fibre cut-off curve with mode attenuation (multimode reference)	26			

- 4 -

INTERNATIONAL ELECTROTECHNICAL COMMISSION

OPTICAL FIBRES –

Part 1-44: Measurement methods and test procedures – Cut-off wavelength

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 60793-1-44 has been prepared by subcommittee 86A: Fibres and cables, of IEC technical committee 86: Fibre optics. It is an International Standard.

This third edition cancels and replaces the second edition published in 2011. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) used the diameter of the fibre loops to describe deployment;
- b) added Annex D related to cut-off curve artifacts;
- c) reorganized information and added more figures to clarify concepts.

The text of this International Standard is based on the following documents:

Draft	Report on voting
86A/2314/FDIS	86A/2327/RVD

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

This document is to be read in conjunction with IEC 60793-1-1.

A list of all parts of the IEC 60793-1 series, published under the general title *Optical fibres* – *Measurement methods and test procedures*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- (standards.iteh.ai
- withdrawn,
- replaced by a revised edition, or IEC 60793-1-44:2023
- amended.dards.iteh.ai/catalog/standards/sist/ccb56d55-7c67-4c45-885f-807f0ef4af6d/iec-

IMPORTANT – The "colour inside" logo on the cover page of this document indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

OPTICAL FIBRES -

- 6 -

Part 1-44: Measurement methods and test procedures – Cut-off wavelength

1 Scope

This part of IEC 60793 establishes uniform requirements for measuring the cut-off wavelength of single-mode optical fibre, thereby assisting in the inspection of fibres and cables for commercial purposes.

This document gives methods for measuring the cut-off wavelength for uncabled or cabled single mode telecom fibre. These procedures apply to all category B and C fibre types.

There are three methods of deployment for measuring the cut-off wavelength:

- method A: cable cut-off using uncabled fibre 22 m long sample, λ_{cc} ;
- method B: cable cut-off using cabled fibre 22 m long sample, λ_{cc} ;
- method C: fibre cut-off using uncabled fibre 2 m long sample, λ_c .

All methods require a reference measurement. There are two reference-scan techniques, either or both of which can be used with all methods:

• bend-reference technique;

2

- <u>IEC 60793-1-44:2023</u>
- multimode-reference technique using category A1(OM1-OM5) multimode fibre.

Normative references 60793-1-

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60793-1-1, Optical fibres – Part 1-1: Measurement methods and test procedures – General and guidance

3 Terms and definitions

No terms and definitions are listed in this document.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- IEC Electropedia: available at https://www.electropedia.org/
- ISO Online browsing platform: available at https://www.iso.org/obp

IEC 60793-1-44:2023 © IEC 2023 - 7 -

4 Background

Theoretical cut-off wavelength is the shortest wavelength at which only the fundamental mode can propagate in a single-mode fibre, as computed from the refractive index profile of the fibre.

In optical fibres, the change from multimode to single mode behaviour does not occur at an isolated wavelength, but rather smoothly over a range of wavelengths. For purposes of determining fibre performance in a telecommunications network, theoretical cut-off wavelength is less useful than the lower value actually measured when the fibre is deployed.

Measured cut-off wavelength is defined as the wavelength greater than which the ratio between the total power, including launched higher-order modes, and the fundamental mode power has decreased to less than 0,1 dB. According to this definition, the second-order (LP₁₁) mode undergoes 19,3 dB more attenuation than the fundamental (LP₀₁) mode at the cut-off wavelength.

Because measured cut-off wavelength depends on the length and bends of the fibre, the resulting value of cut-off wavelength depends on whether the measured fibre is configured in a deployed, cabled condition or if it is short and uncabled. Consequently, there are two overall types of cut-off wavelength:

- cable cut-off wavelength (λ_{cc}) measured in an uncabled fibre deployment condition (method A), or in a cabled condition (method B);
- fibre cut-off wavelength (λ_c) measured on a short length of uncabled, primary-coated fibre (method C).

Cable cut-off wavelength is the preferred attribute to be specified and measured.

<u>IEC 60793-1-44:2023</u>

5 Overview of methods log/standards/sist/ccb56d55-7c67-4c45-885f-807f0ef4af6d/iec-

All of the methods shall use the transmitted-power technique. A general system block diagram is depicted in Figure 1. A fibre specimen is scanned by a wavelength spectrum. The output optical power is measured and stored. This stored data is then analysed against a reference power spectrum. The reference scan normalizes any wavelength-dependent fluctuations in the measurement equipment that is not associated with the loss of the LP₁₁ mode. The resulting attenuation will thus properly characterize the cut-off wavelength.

Figure 1 – Cut-off measurement system block diagram

The reference scan uses one of the following two techniques:

- bend reference where a small diameter bend is added to the fibre specimen;
- multimode reference where the optical power through an A1(OM1-OM5) fibre is measured.

Either reference technique can determine the cut-off wavelength of a fibre specimen in a cabled or uncabled condition.

The fibre cut-off wavelength, λ_c , measured under the standard length and bend conditions described in this document, will generally exhibit a value larger than the cable cut-off wavelength, λ_{cc} . For normal installed cable spans, it is common for the measured λ_c value to exceed the long fibre's transmission wavelength.

Cable cut-off wavelength is more useful in describing an installed network system performance and capability, while fibre cut-off would apply to short cables or pigtails. The two cut-off wavelengths can be mapped to each other for a specific fibre type and cut-off measurement method. The customer and the supplier shall agree to the confidence level of each mapping function established (see Clause 11 for details).

6 Reference test method

Method A, cable cut-off wavelength using uncabled fibre, is the reference test method (RTM). This method shall be used to settle any disputes.

7 Apparatus

7.1 Light source en STANDARD PREVIEW

Provide a filtered white light source, with line width not greater than 10 nm, stable in position and intensity. The light source should be capable of operating over the wavelength range 1 000 nm to 1 600 nm for most category B fibres. An operating range of 800 nm to 1 700 nm may be necessary for some B-655 fibres, B-656 fibres or category C fibres. A scanning monochromator with a halogen bulb is one example of this kind of source.

https://standards.iteh.ai/catalog/standards/sist/ccb56d55-7c67-4c45-885f-807f0ef4af6d/iec-

7.2 Modulation 60793-1-44-2023

Modulate the light source to prevent ambient light affecting the results, and to aid signal recovery. A mechanical chopper with a reference output is a suitable arrangement.

7.3 Launch optics

Provide launch optics, such as a lens system or a multimode fibre, to overfill the test fibre over the full range of measurement wavelengths. This launch is relatively insensitive to the input end face position of the single-mode fibre and is able to excite the fundamental and any higher-order modes in the specimen. If using a butt splice, provide means of avoiding interference effects.

When using a multimode fibre, overfilling the reference fibre can produce an undesired ripple effect in the power-transmission spectrum. Restrict the launch sufficiently to eliminate the ripple effect. One example of restricted launch is in method A, attenuation by cut-back, of IEC 60793-1-40. Another example of restricted launch is a mandrel-wrap mode filter with sufficient (approximately 4 dB) insertion loss.

7.4 Support and positioning apparatus

Provide a means to stably support the input and output ends of the specimen for the duration of the test; vacuum chucks, magnetic chucks, or connectors may be used for this purpose. Support the fibre ends such that they can be repeatedly positioned in the launch and detection optics. When measuring λ_{cc} in method B, provide a means to suitably support the cable ends. The mechanism used to hold the fibre ends allows for fibre positioning with respect to the launch and detection optics. Holding and moving of the fibre should not cause micro-bends that affect the measurement accuracy.

IEC 60793-1-44:2023 © IEC 2023 - 9 -

7.5 Deployment mandrel

7.5.1 General

The fibre specimen's two ends, input and output, are mechanically held in place during the measurement. The deployment and length of the specimen, together with the support apparatus, are key elements of the measurement method, and they distinguish the types of cut-off wavelength.

Additional, alternative deployments may be used if the results obtained have been demonstrated to be empirically equivalent to the results obtained using the standard deployment, to within 10 nm, or they are greater than those achieved with the standard configurations.

7.5.2 Cable cut-off wavelength deployment, method A

Provide a means to make an 80 mm diameter loop at each end of the specimen and a loop of diameter \ge 280 mm in the central portion. See Figure 2.

Figure 2 – Deployment configuration for cable cut-off wavelength λ_{cc} , method A

7.5.3 Cable cut-off wavelength deployment, method B

Provide a means to make an 80 mm diameter loop at each end of the specimen. See Figure 3. The cabled fibre between the two 80 mm loops has a bending diameter greater than 280 mm.

7.5.4 Fibre cut-off wavelength deployment, method C

Provide means to route a fibre specimen through one complete circular loop having a diameter equal to 280 mm, see Figure 4.

Dimensions in millimetres

Figure 4 – Standard deployment for fibre cut-off wavelength measurement

7.6 Detection optics

Couple all power emitted from the specimen onto the active region of the detector. As examples, an optical lens system, a butt splice with a multimode fibre pigtailed to a detector, or direct coupling may be used.

7.7 Detector assembly and signal detection electronics

Use a detector that is sensitive to the output radiation over the range of wavelengths to be measured and that is linear over the range of intensities encountered. A typical system might include a germanium or InGaAs photodiode, operating in the photo-voltaic mode, and a current-sensitive preamplifier, with synchronous detection by a lock-in amplifier. Generally, a computer is required to analyse the data.

793-1-44-2023

7.8 Cladding mode stripper

Provide a means to remove cladding-mode power from the specimen. Under some circumstances, the fibre coating will perform this function; otherwise, provide methods or devices that extract cladding-mode power at the input and output ends of the specimen.

8 Sampling specimen

8.1 Specimen length

Choose the specimen length according to which parameter is being measured and, if the parameter is cable cut-off wavelength, the method to be used. See the appropriate annex: Annex A or Annex B for the cable cut-off wavelength measurement or Annex C for fibre cut-off wavelength.

8.2 Specimen end face

Prepare a flat end face, orthogonal to the fibre axis, at the input and output ends of each specimen. An optical fibre cleaver is often used to achieve very flat and clean end faces.