

Edition 2.0 2023-02

INTERNATIONAL STANDARD

Multicore and symmetrical pair/quad cables for digital communications – Part 8: Symmetrical pair cables with transmission characteristics up to 1 200 MHz – Work area wiring – Sectional specification

IEC 61156-8:2023

https://standards.iteh.ai/catalog/standards/sist/0f2c9a00-fc4a-42bd-9f27-4c3dc4824e53/iec-61156-8-2023

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2023 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Secretariat 3, rue de Varembé CH-1211 Geneva 20 Switzerland

Tel.: +41 22 919 02 11 info@iec.ch

www.iec.ch

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About the IEC

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublishedStay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

IEC Products & Services Portal - products.iec.ch

Discover our powerful search engine and read freely all the publications previews. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 300 terminological entries in English and French, with equivalent terms in 19 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

Edition 2.0 2023-02

INTERNATIONAL STANDARD

Multicore and symmetrical pair/quad cables for digital communications – Part 8: Symmetrical pair cables with transmission characteristics up to 1 200 MHz – Work area wiring – Sectional specification

IEC 61156-8:2023

https://standards.iteh.ai/catalog/standards/sist/0f2c9a00-fc4a-42bd-9f27-4c3dc4824e53/iec-61156-8-2023

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 33.120.20 ISBN 978-2-8322-6375-4

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

Ε(JREWORD.		5		
1	Scope		7		
2	Normativ	e references	7		
3	Terms ar	nd definitions	7		
4					
		neral remarks			
		nding radius of installed cable			
		natic conditions			
5	Material and cable construction				
•		neral remarks			
		ble construction			
	5.2.1	General			
	5.2.2	Conductor			
	5.2.3	Insulation			
	5.2.4	Cable element			
	5.2.5	Cable make-up			
	5.2.6	Screening of the cable core			
	5.2.7	SheathSheath	9		
	5.2.8	Identification	10		
	5.2.9	Finished cable	10		
6	Characte	Finished cable	10		
		neral remarks			
	6.2.1	ctrical characteristics and tests	^{3/iec} - 10		
	6.2.2	Resistance unbalance within a pair			
	6.2.3	Dielectric strength			
	6.2.4	Insulation resistance	11		
	6.2.5	Mutual capacitance	11		
	6.2.6	Capacitance unbalance pair to ground	11		
	6.2.7	Transfer impedance	11		
	6.2.8	Coupling attenuation	11		
	6.2.9	Current-carrying capacity	12		
	6.2.10	Resistance of the screen			
		nsmission characteristics			
	6.3.1	General remark			
	6.3.2	Velocity of propagation (phase velocity)			
	6.3.3	Phase delay and differential phase delay (delay skew)			
	6.3.4	Attenuation (a)			
	6.3.5	Unbalance attenuation near-end (TCL, EL TCTL)			
	6.3.6	Near-end crosstalk (PS NEXT, NEXT)			
	6.3.7	Far-end crosstalk (PS ACR-F, ACR-F)			
	6.3.8	Alien (exogenous) near-end crosstalk			
	6.3.9	Alien (exogenous) far-end crosstalk			
	6.3.10	Alien (exogenous) crosstalk of bundled cables			
	6.3.11	Impedance			
	6.3.12	Return loss (RL)	16		

6.4 Med	chanical and dimensional characteristics and requirements	16				
6.4.1	Dimensional requirements	16				
6.4.2	Elongation at break of the conductors	16				
6.4.3	Tensile strength of the insulation	16				
6.4.4	Elongation at break of the insulation	16				
6.4.5	Adhesion of the insulation to the conductor	16				
6.4.6	Elongation at break of the sheath	17				
6.4.7	Tensile strength of the sheath	17				
6.4.8	Crush test of the cable	17				
6.4.9	Impact test of the cable	17				
6.4.10	Bending under tension	17				
6.4.11	Repeated bending of the cable	17				
6.4.12	Tensile performance of the cable	17				
6.4.13	Shock-test requirements of the cable	17				
6.4.14	Bump-test requirements of the cable					
6.4.15	Vibration-test requirements of the cable	17				
6.5 Env	rironmental characteristics	17				
6.5.1	Shrinkage of insulation	17				
6.5.2	Wrapping test of insulation after thermal ageing	17				
6.5.3	Bending test of insulation at low temperature	17				
6.5.4	Elongation at break of the sheath after ageing	18				
6.5.5	Tensile strength of the sheath after ageing	18				
6.5.6	Sheath pressure at high temperature	18				
6.5.7	Cold bend test of the cable	18				
6.5.8	Hot shock test	18				
6.5.9 tan	Damp heat steady state	iee18				
6.5.10	Solar radiation (UV)	18				
6.5.11	Solvent and contaminating fluids	18				
6.5.12	Salt mist and sulphur dioxide	18				
6.5.13	Water immersion	18				
6.5.14	Hygroscopicity	18				
6.5.15	Wicking	18				
6.5.16	Flame propagation characteristics of a single cable	18				
6.5.17	Flame propagation characteristics of bunched cables	19				
6.5.18	Resistance to fire	19				
6.5.19	Halogen gas evolution	19				
6.5.20	Smoke generation	19				
6.5.21	Toxic gas emission	19				
6.5.22	Integrated fire test	19				
7 Introducti	on to the blank detail specification	19				
Annex A (info	rmative) Blank detail specification	20				
Bibliography		26				
0 , ,						
Table 1 - Tran	nsfer impedance	11				
Table 2 – Coupling attenuation						
	Table 3 – Attenuation, constant values					
	nuation values	13				
Table 5 Nee	r and crosstalk nower sum (PS NEVT)	1/				

Table 6 – Far-end crosstalk (PS ACR-F)	. 15
Table 7 – Return loss	16

iTeh STANDARD PREVIEW (standards.iteh.ai)

IEC 61156-8:2023

https://standards.iteh.ai/catalog/standards/sist/0f2c9a00-fc4a-42bd-9f27-4c3dc4824e53/iec-61156-8-2023

INTERNATIONAL ELECTROTECHNICAL COMMISSION

MULTICORE AND SYMMETRICAL PAIR/QUAD CABLES FOR DIGITAL COMMUNICATIONS –

Part 8: Symmetrical pair cables with transmission characteristics up to 1 200 MHz – Work area wiring – Sectional specification

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 61156-8 has been prepared by subcommittee 46C: Wires and symmetrical cables, of IEC technical committee 46: Cables, wires, waveguides, RF connectors, RF and microwave passive components and accessories. It is an International Standard.

This part of IEC 61156 is to be read in conjunction with IEC 61156-1:2023 and IEC 61156-7:2023.

This second edition cancels and replaces the first edition published in 2009, and Amendment 1:2013. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

a) align clauses with IEC 61156-1:2023;

- b) additional reference to IEC 62153-4-9 test method (triaxial) for coupling attenuation measurement to be consistent with all other parts of the IEC 61156 series;
- c) incorporation of blank detail specification.

The text of this International Standard is based on the following documents:

Draft	Report on voting
46C/1229/CDV	46C/1234/RVC

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

A list of all parts in the IEC 61156 series, published under the general title *Multicore and symmetrical pair/quad cables for digital communications*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,

EC 61156-8:2023

- replaced by a revised edition, orndards/sist/0/2c9a00-fc4a-42bd-9/27-4c3dc4824e53/jec-
- amended. 61156-8-2

MULTICORE AND SYMMETRICAL PAIR/QUAD CABLES FOR DIGITAL COMMUNICATIONS –

Part 8: Symmetrical pair cables with transmission characteristics up to 1 200 MHz – Work area wiring – Sectional specification

1 Scope

This part of IEC 61156 relates to IEC 61156-1 and IEC 61156-7. The cables described herein are specified up to 1 200 MHz and are specifically designed to build work area cords.

It covers a cable having four individually screened (S/FTP) pairs. The cable can be provided with a common screen over the cable core.

The transmission characteristics are specified up to a frequency of 1 200 MHz and at a temperature of 20 °C.

The cables covered by this sectional specification are intended to operate with voltages and currents normally encountered in communication systems and support the delivery of DC low voltage remote powering applications. These cables are not intended to be used in conjunction with low impedance sources, for example the electric power supply of public utility mains.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60304, Standard colours for insulation for low-frequency cables and wires

IEC 61156-1:2023, Multicore and symmetrical pair/quad cables for digital communications – Part 1: Generic specification

IEC 62153-4-3, Metallic communication cable test methods – Part 4-3: Electromagnetic compatibility (EMC) – Surface transfer impedance – Triaxial method

IEC 62153-4-5, Metallic communication cable test methods – Part 4-5: Electromagnetic compatibility (EMC) –Screening or coupling attenuation – Absorbing clamp method

IEC 62153-4-9, Metallic communication cable test methods – Part 4-9: Electromagnetic compatibility (EMC) – Coupling attenuation of screened balanced cables, triaxial method

IEC 61156-7, Multicore and symmetrical pair/quad cables for digital communications – Part 7: Symmetrical pair cables with transmission characteristics up to 1 200 MHz – Sectional specification for digital and analogue communication cables

3 Terms and definitions

For the purposes of this document, the terms and definitions given in IEC 61156-1 apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- IEC Electropedia: available at https://www.electropedia.org/
- ISO Online browsing platform: available at https://www.iso.org/obp

4 Installation consideration

4.1 General remarks

Installation considerations are defined in IEC 61156-1.

4.2 Bending radius of installed cable

The bending radius of the installed cable shall not be less than 4 times the outside diameter of the cable.

4.3 Climatic conditions

Under static conditions, the cables shall operate in the temperature range from -20 °C to +60 °C. The temperature dependence of the cables is specified for screened cables and should be taken into account for the design of actual cabling systems.

The recommended temperature range during installation should be indicated in the relevant detail specification.

When applications demand remote powering, the maximum temperature of the conductor shall not exceed the maximum operating temperature of the cable. Dielectric performance can be changed permanently due to over exposure of high temperatures.

https://standards.iteh.ai/catalog/standards/sist/0f2c9a00-fc4a-42hd-9f27-4c3dc4824e53/iec-

5 Material and cable construction 1156_8_9093

5.1 General remarks

The choice of materials and cable construction shall be suitable for the intended application and installation of the cable. Particular care should be taken to meet any special requirements for fire performance (such as burning properties, smoke generation, evolution of halogen gas, etc.) and remote powering.

5.2 Cable construction

5.2.1 General

The cable construction shall be in accordance with the materials, dimensions and assembly details given in the relevant detail specification.

5.2.2 Conductor

The conductor shall be a solid or stranded annealed copper conductor, in accordance with IEC 61156-1, and should have a nominal diameter between 0,4 mm and 0,65 mm. The stranded conductor should have preferably seven strands. Higher conductor diameters may be used if compatible with the connecting hardware.

5.2.3 Insulation

5.2.3.1 Insulation material

The conductor shall be insulated with a suitable thermoplastic material. Examples of suitable materials are:

- polyolefin;
- fluoropolymer;
- low-smoke halogen-free thermoplastic material.

The insulation may be solid or cellular with or without a solid dielectric skin. The insulation shall be continuous and shall have a thickness such that the completed cable meets the specified requirements. The nominal thickness of the insulation shall be compatible with the method of conductor termination.

5.2.3.2 Colour code of insulation

The colour code is not specified but shall be indicated in the relevant detail specification. The colours shall be readily identifiable and shall correspond reasonably with the standard colours shown in IEC 60304.

NOTE It is acceptable to mark or stripe the "a" wire with the colour of the "b" wire to facilitate pair identification.

5.2.4 Cable element

5.2.4.1 Cable element type

The cable element shall be a screened twisted pair.

5.2.4.2 Screening of the cable element 156-82023

The screen for the cable element shall be in accordance with IEC 61156-1. If a braid is used, the minimum braid coverage shall be such as to meet the screening requirements of this document. The individual components used to screen the cable element shall be in electrical contact.

5.2.5 Cable make-up

The cable elements shall be assembled to form the cable core.

The core of the cable may be wrapped with a protective layer of non-hygroscopic and non-wicking material.

5.2.6 Screening of the cable core

A screen for the cable core may be provided. The screen shall be in accordance with IEC 61156-1.

5.2.7 Sheath

The sheath material shall consist of a suitable thermoplastic material.

Examples of suitable materials are:

- polyolefin;
- PVC;
- fluoropolymer;
- low-smoke halogen-free thermoplastic material.

The sheath shall be continuous, having a thickness as uniform as possible. A non-metallic ripcord may be provided. When provided, the ripcord shall be non-hygroscopic and non-wicking.

The colour of the sheath is not specified but should be specified in the relevant detail specification.

5.2.8 Identification

5.2.8.1 Cable marking

Each length of cable shall bear the name of the supplier and the cable type and, when provided, the year of manufacture, using one of the following methods:

- a) coloured threads or tapes;
- b) printed tape;
- c) printing on the cable core wrapping;
- d) marking on the sheath.

Additional markings, such as length marking, etc., are permitted. If used, such markings should be indicated in the relevant detail specification.

5.2.8.2 Labelling

The following information shall be provided either on a label attached to each length of finished cable or on the outside of the product package:

- a) type of cable; (Standards.iteh.al
- b) supplier's name or logo;
- c) year of manufacture; IEC 61156-8:2023
- d) length of cable in metres. log/standards/sist/0/2c9a00-fc4a-42bd-9f27-4c3dc4824e53/iec-

5.2.9 Finished cable

The finished cable shall be adequately protected for storage and shipment.

6 Characteristics and requirements

6.1 General remarks

Clause 6 lists the characteristics and minimum requirements of a cable complying with this document. Test methods shall be in accordance with IEC 61156-1:2023, Clause 6.

6.2 Electrical characteristics and tests

6.2.1 Conductor resistance

The maximum conductor resistance shall not exceed 14,5 $\Omega/100$ m of cable.

6.2.2 Resistance unbalance within a pair

The resistance unbalance within a pair shall not exceed 2,0 %.

6.2.3 Dielectric strength

The test shall be performed on conductor/conductor and conductor/screen with 1,0 kV DC for 1 min or, alternately, with 2,5 kV DC for 2 s.