This document is not an ASTM standard and is intended only to provide the user of an ASTM standard an indication of what changes have been made to the previous version. Because it may not be technically possible to adequately depict all changes accurately, ASTM recommends that users consult prior editions as appropriate. In all cases only the current version of the standard as published by ASTM is to be considered the official document.

Designation: E1018 - 09 (Reapproved 2013)²¹ E1018 - 20

Standard Guide for Application of ASTM Evaluated Cross Section Data File¹

This standard is issued under the fixed designation E1018; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

ε¹ NOTE—The title of this guide and the Referenced Documents were updated in May 2017.

1. Scope

1.1 This guide covers the establishment and use of an ASTM evaluated nuclear data cross section and uncertainty file for analysis of single or multiple sensor measurements in neutron fields related to light water reactor LWR-Pressure Vessel Surveillance (PVS). These fields include in- and ex-vessel surveillance positions in operating power reactors, benchmark fields, and reactor test regions.

1.2 Requirements for establishment of <u>ASTM-approvedASTM-recommended</u> cross section files address data format, evaluation requirements, validation in benchmark fields, evaluation of error estimates (covariance file), and documentation. A further requirement for components of the <u>ASTM-approvedASTM-recommended</u> cross section file is their internal consistency when combined with sensor measurements and used to determine a neutron spectrum.

1.3 Specifications for use include energy region of applicability, data processing requirements, and application of uncertainties.

1.4 This guide is directly related to and should be used primarily in conjunction with Guides E482 and E944, and Practices E560, E185, and E693.

1.5 The ASTM cross section and uncertainty file represents a generally available data set for use in sensor set analysis. However, the availability of this data set does not preclude the use of other validated data, either proprietary or nonproprietary. When alternate cross section files are used that deviate from the requirements laid out in this standard, standard are used, the deviations should be noted to the customer ofrof the dosimetry application.

1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety safety, health, and health environmental practices and determine the applicability of regulatory limitations prior to use.

1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:²

E170 Terminology Relating to Radiation Measurements and Dosimetry

E185 Practice for Design of Surveillance Programs for Light-Water Moderated Nuclear Power Reactor Vessels

E482 Guide for Application of Neutron Transport Methods for Reactor Vessel Surveillance

E560 Practice for Extrapolating Reactor Vessel Surveillance Dosimetry Results, E 706(IC) (Withdrawn 2009)³

E693 Practice for Characterizing Neutron Exposures in Iron and Low Alloy Steels in Terms of Displacements Per Atom (DPA) E844 Guide for Sensor Set Design and Irradiation for Reactor Surveillance

E853 Practice for Analysis and Interpretation of Light-Water Reactor Surveillance Neutron Exposure Results

E854 Test Method for Application and Analysis of Solid State Track Recorder (SSTR) Monitors for Reactor Surveillance

E910 Test Method for Application and Analysis of Helium Accumulation Fluence Monitors for Reactor Vessel Surveillance

¹ This guide is under the jurisdiction of ASTM Committee E10 on Nuclear Technology and Applications and is the direct responsibility of Subcommittee E10.05 on Nuclear Radiation Metrology.

Current edition approved June 1, 2013March 1, 2020. Published July 2013April 2020. Originally published as E1018 – 84. Last previous edition approved in 20092013 as E1018-09. – 09 (2013)^{e1}. DOI: 10.1520/E1018-09R13E01.10.1520/E1018-20.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.

³ The last approved version of this historical standard is referenced on www.astm.org.

E944 Guide for Application of Neutron Spectrum Adjustment Methods in Reactor Surveillance E1005 Test Method for Application and Analysis of Radiometric Monitors for Reactor Vessel Surveillance E2005 Guide for Benchmark Testing of Reactor Dosimetry in Standard and Reference Neutron Fields

3. Terminology

3.1 Definitions of Terms Specific to This Standard:

3.1.1 *benchmark field*—a limited number of neutron fields have been identified as benchmark fields for the purpose of dosimetry sensor calibration and dosimetry cross section data development and testing (1, 2).⁴ See Terminology E170. These fields arewere permanent facilities in which experiments can<u>could</u> be repeated. In addition, differential neutron spectrum measurements have been performed in many of the fields to provide, together with transport calculations and integral measurements, the best state-of-the-art neutron spectrum evaluation. To supplement the data available from benchmark fields, most of which are limited in fluence rate intensity, reactor test regions for dosimetry method validation have also been defined, including both in-reactor and ex-vessel dosimetry positions. Table 1 lists some of the neutron fields that have been used for data development, testing, and evaluation. Many of these fields may not be available any longer, but new nuclear data files are still validated against the historical measurements made in these fields. Other benchmark fields used for testing LWR calculations are described in <u>Guide E2005</u>.

3.1.1.1 *standard field*—these fields are produced by facilities and apparatus that are stable, permanent, and whose fields are reproducible with neutron fluence rate intensity, energy spectra, and angular fluence rate distributions characterized to state-of-the-art accuracy. Important standard field quantities must be verified by interlaboratory measurements. These fields exist at the National Institute of Standards and Technology (NIST) and other <u>national</u> laboratories.

3.1.1.2 *reference field*—these fields are produced by facilities and apparatus that are permanent and whose fields are reproducible, less well characterized than a standard field, but acceptable as a measurement reference by the community of users.

3.1.1.3 *controlled environment*—these environments are well-defined neutron fields with some spectral definitions, employed for a restricted set of validation experiments over a range of energies.

3.1.2 *dosimetry cross sections*—cross sections used for dosimetry application and which provide the total-cross section for production of particular (measurable) reaction products. These include fission cross sections for production of fission products, activation cross sections for the production of radioactive nuclei, and cross sections for production of measurable stable products, such as helium.

3.1.3 *evaluated data*—values of physical quantities representing a current best estimate. Such estimates are developed by experts considering measurements or calculations of the quantity of interest, or both. Cross section evaluations, for example, are conducted by teams of scientists such as the ENDF/B Cross Section Evaluation Working Group (CSEWG) (see also <u>3.1.5</u>section <u>3.1.5.2</u>).

STM E1018-20

TABLE 1 Partial List of Characterized Neutron Fields Used for Validating Dosimetry Cross Sections

Neutren Field	Sample Facility	En	ergy	Useful Energy Range	Reference	
Neutron Field	Location	Median	Average	for Data Testing ^A	Documentation	
		Standard	Fields			
Thermal Maxwellian	NIST			<0.51 eV		
252Cf Fission	NIST (3)	1.68 MeV	2.13 MeV	100 keV-8 MeV	Ref (3)	
					Designation XCF-5-N1	
²³⁵ U Thermal Fission	NIST (3)	1.57 MeV	1.97 MeV	250 keV–3 MeV	Ref (3)	
	Mol-χ ₂₅ (4 , 5)				Designation XU5-5-N1	
ISNF	NIST (6)	0.56 MeV	\sim 1.0 MeV	10 keV-3.5 MeV	Ref (3)	
	NISUS (7)				Designation ISNF(5)-1-L1	
	Mol-∑∑ (8)					
		Reference	e Fields			
BIG TEN	LANL (9,10)	0.33 MeV	0.58 MeV	10 keV–3 MeV	Ref (9)	
					Fast Reactor Benchmark	
					20	
CERME	EGG-Idaho (9, 11)	0.375 MeV	0.76 MeV	4 keV-2.5 MeV	Ref 9	
CFRMF	<u>INL (9, 11)</u>	0.375 MeV	0.76 MeV	4 keV-2.5 MeV	Ref (9)	
					Dosimetry Benchmark 1	
		Controlled En	vironments			
PCA-PV	ORNL (12)			100 keV-10 MeV	Ref (12)	
EBR-II	ANL-West (13)			1 keV-10 MeV	Ref 13	
EBR-II	<u>INL (13)</u>		<u></u>	1 keV-10 MeV	Ref (13)	
FFTF	HEDL (14)			1 keV-10 MeV	Ref (14)	

^A The requirements for the data testing energy range are much more strict stricter for reference and standard fields than for controlled fields. These testing energy ranges reflect comparison with calculations based on published spectra for reference and standard fields, but only address data reproducibility for controlled environments.

⁴ The boldfaced numbers in parentheses refer to the list of references at the end of this guide.

3.1.4 *Evaluated Nuclear Data File (ENDF)*—consists of neutron cross sections and other nuclear data evaluated from available experimental measurements (15) and calculations. Two types of ENDF files exist.

3.1.4.1 *ENDF/B files*—evaluated files officially approved by CSEWG [see ENDF documents 102-format document ENDF-102 available at the CSEWG website, (1516);) 201 after (suitable 16), and 216-review and testing. The latest version of the ENDF/B nuclear data evaluations is ENDF/B-VIII.0 (17).] after suitable review and testing.

3.1.4.2 *ENDF/A files*—evaluated files including outdated versions of ENDF/B, the International Reactor Dosimetry File (IRDF-2002) (18), the International Reactor Dosimetry and Fusion File (IRDFF) (19, 20), the Japanese Evaluated Nuclear Data Library (JENDL) (1921), BROND (USSR) (2022)), JEFF 23 and other evaluated cross section libraries. These files include partial as well as complete evaluations.

3.1.5 *integral data/differential data*—integral data are data points that represent an integrated sensor's response over a range of energy. Examples are measurements of reaction rates or fission rates in a fission neutron spectrum. Differential data are measurements at single energy points or over a relatively small energy range. Examples are time-of-flight measurements, proton recoil spectrometry, etc. (2124).

3.1.6 *uncertainty file*—the uncertainty in cross section data has been included with evaluated cross section libraries that are used for dosimetry applications. Because of the correlations between the data points or cross section parameters, these uncertainties, in general, cannot be expressed as variances, but rather a covariance matrix must be specified. Through the use of the covariance matrix, uncertainties in derived quantities, such as average cross sections, can be calculated more accurately.

4. Significance and Use

4.1 The ENDF/B library in the United States and similar libraries elsewhere, such as JEFJEFF (2223), JENDL (1921), and BROND (2022), provide a compilation of neutron cross section and other nuclear data for use by the nuclear community. The availability of these excellent and consistent evaluations makes possible standardized usage, thereby allowing easy referencing and intercomparisons of calculations. However, as the first ENDF/B files were developed it became apparent that they were not adequate for all applications. This need resulted in the development of the specialized ENDF/B Dosimetry File (17, 2325), consisting of activation cross sections important for dosimetry applications. This file was made available worldwide. Later, other" Specialother "Special Purpose" files were introduced (2426). In the ENDF/B-VI compilation (2527), dosimetry files were identified, but they no longer appeared as separate evaluation files. The ENDF/V-VHENDF/B-VII.0 compilation (2628) removed most of the reaction-specific covariance files used by the dosimetry community. It kept the covariance files for the "standard cross sections" in a special sub-library, but the covariance data in this sub-library is are only provided over the energy range in which each reaction is considered to be a "standard", and does not include the full energy range required for LWR PVS dosimetry applications. Later updates to the ENDF/B releases added covariance files for some reaction channels but these covariance files were often based solely on calculations and were not representative of the methodology used to derive the underlying ENDF/B cross section. In response to the need for a dosimetry-specific library, the International Atomic Energy Agency convened a Coordinated Research Project (CRP) that drew upon the set of international experts to provide a recommended set of dosimetry cross sections and to compile a set of validation evidence that supported the use of this recommended dataset. This file, the International Reactor Dosimetry and Fusion File (IRDFF) (19, 20), draws upon other national nuclear evaluations and supplements these evaluations with a set of reactions evaluated by expert international groups. The IRDFF library was developed to support the LWR dosimetry application as well as other dosimetry applications that go beyond the scope of this standard and, as part of its development process, it incorporates validation data acquired in reference and standard benchmark neutron fields. Some of the IRDFF supplemental reactions represent material evaluations that are currently being examined by the CSEWG for inclusion within updated ENDF/B evaluations. The supplemental IRDFF evaluations only include the specific reactions of interest to the dosimetry community and not a full material evaluation. The ENDF community requires a complete evaluation before including it in the main ENDF/B evaluated library.

4.2 Another file of evaluated neutron cross section data has been established by the International Atomic Energy Agency (IAEA) for reactor dosimetry applications. This file, the International Reactor Dosimetry File (IRDF-2002) (18), draws upon the ENDF/B files and supplements these evaluations with a set of reactions evaluated by groups often outside of the United States. Some of the IRDF-2002 supplemental reactions represent material evaluations that are currently being examined by the CSEWG. The supplemental IRDF-2002 evaluations only include the specific reactions of interest to the dosimetry community and not a full material evaluation. The ENDF/B evaluated library.

4.2 The application to LWR surveillance dosimetry may introduce introduced new data needs that can best be satisfied by the creation of a dedicated cross section file. This file shall be <u>maintained</u> in a form designed for easy application by users (minimal processing). The file shall eonsist of <u>continue to incorporate</u> the following types of information or indicate the sources of the following type of data that should be used to supplement the file contents:

4.2.1 Dosimetry cross sections for fission, activation, helium production sensor reactions in LWR environments in support of radiometric, solid state track recorder, helium accumulation dosimetry methods (see Test Methods E853, E854, E910, and E1005).

4.2.2 Other cross sections or sensor response functions useful for active or passive dosimetry measurements, for example, the use of neutron absorption cross sections to represent attenuation corrections due to covers or self-shielding.

4.2.3 Cross sections for damage evaluation, such as displacements per atom (dpa) in iron.

4.2.4 Related nuclear data needed for dosimetry, such as branching ratios, fission yields, and atomic abundances.

4.3 The ASTM-recommended cross sections and uncertainties are based mostly on the ENDF/B-VI and IRDF-2002IRDFF (version 1.05) dosimetry files. Damage cross sections for materials such as iron have been added in order to promote standardization of reported dpa measurements within the dosimetry community. Integral measurements from benchmark fields and reactor test regions shall be used have been considered in order to ensure self-consistency and(29). establish correlations between eross sections. The total dosimetry file is intended to be as self-consistent as possible with respect to both differential and integral measurements as applied in LWR environments. This self-consistency of the data file is mandatory for LWR-pressure vessel surveillance applications, where only very limited dosimetry data are available. Where modifications to an existing evaluated cross section have been made to obtain this self-consistence in LWR environments, the modifications shall be detailed in the associated documentation (see $\frac{5.6}{19}$, 29)).

5. Establishment of Cross Section File

5.1 *Committee*—The cross section and uncertainty file shall be established and maintained under a responsible task group appointed by Subcommittee E10.05 on Nuclear Radiation Metrology. The task group shall review, and approve all data before insertion of the file and ensure the adequate testing has been performed on the file contents. The task group shall establish requirements, data formats, etc.

5.2 Formats—Formats shall generally conform to one of two types. The first format type is that referred to as the ENDF-6 format and is specified in ENDF-201 ((1630).). The second format type consists of multigroup data in the 640 group SAND-II (2731, 2832) energy structure (see Practice E693 for SAND-II energy group structure). The multigroup data format is the preferred form since it is more compatible with the forms typically used to represent facility neutron spectra. The spectrum weighting function used to collapse the point cross section data onto the multigroup energy grid should be generic in nature and shall be completely specified in the associated documentation.nature. Unless specified differently in associated file documentation, the weighting function used in the collapse of the point cross sections is assumed to be equivalent to the NJOY-2012 GROUPR module iwt=8 weight function option for "thermal—1/Ee—fast reactor—fission +_ fusion" weight function using the default energy breakpoints (32).

5.3 Cross Section Evaluation—Most evaluations generally shall be based on the IRDF-2002 Dosimetry File. The source(s) for the recommended cross section for each dosimetry reaction is/are identified in Table 2. Currently, the recommended cross section for most dosimetry reactions are found in the IRDFF-1.05 library. For the dosimetry reactions of interest for LWR applications and addressed in Table 2, users should use the IRDFF version 1.05 library as the recommended source for cross sections up to 20 MeV. Cross sections shall be consistent within error bounds for selected benchmark fields (see 5.4 and Table 1) and this consistency has been demonstrated for the IRDFF version 1.05 library (29). Dosimetry cross sections presently not in ENDF/B or IRDF-2002 IRDFF-1.05 shall be obtained from other the designated alternate sources or from new evaluations. Other cross sections may be obtained from other sources, for example, the dpa cross section for iron may be obtained from Practice E693.

NOTE 1—The IRDFF library includes several iron dpa cross sections that are endorsed for use by the international reactor dosimetry community for application to LWR pressure vessel surveillance. The iron dpa from Practice E693 is one of these IRDFF dpa damage functions and it [MAT=2600, MF=3, MT=900] is the ASTM recommended response for this damage metric.

5.4 *Cross Section Validation*—The cross section file will be validated for LWR applications using dosimetry measurements made in benchmark fields. Such validation may result in necessary modifications to cross sections to eliminate significant biases. Modification of <u>ENDF/BIRDFF</u> and <u>IRDF-2002ENDF/B</u> files shall be done in a manner consistent with the uncertainties specified for the differential data, using a least squares methodology.

5.5 *Related Nuclear Data for Dosimetry Application*—All necessary related data shallshould be specified in the documentation associated with the specific dosimetry application. These data include isotopic abundances, gamma branching ratios, fission yields, half-lives, etc., as appropriate. Updates of these data shall require, in general, a revalidation of the cross section (see 5.4). In the ENDF-6 format this data can be specified as comment cards in the File 1 General Information section. The evaluation file or associated documentation may cite a comprehensive dosimetry-quality source, such as the *Nuclear Data Guide for Reactor Neutron Metrology*(2933) or the SNLRMI, (26, 34, 35), for the related nuclear data.

5.5.1 If the related data is not explicitly provided in the cross section evaluation itself or a reference is not cited, then the related data shall be taken from sources specified in 5.5.2 - 5.5.7. These sources represent the latest dosimetry-quality community-evaluated databases.

5.5.2 *isotopic abundances*—The most recent comprehensive listing principal reference for isotopic abundance in dosimetry applications should be from the international collaboration Decay Data Evaluation Project (DDEP) as documented in BIPM-5 (36).of isotopic abundances is given in This is the principal source of isotopic abundance data used in the IRDFF cross sections. When the data is not available in the BIPM-5, Ref (3037, 31) and the 2005 gives isotopic abundances Nuclear Wallet Cardssuitable for use(32) distributed by the National Nuclear Data Center (NNDC). with this standard.

TABLE 2 Recommended Sources for Several Useful Dosimetry Cross Sections

Note 1—P = Primary source of recommended evaluation. • = Identical to primary source.

ENDERBYLIK (H) JEEPF 3.1 (22) REDF 2002 (48) JEEPF 2002 (48) Support	Dosimetry Reac- tion	Material ID in Primary Library	Cross Section Librar	Comment				
LinxyHue -325 P			ENDF/B-VI.8 (16)	JENDL/D-99 (35)	JEFF 3.1 (22)	RRDF-2002 (36)	IRDF-2002 (18)	
1128/07.214b 025 P #COMP 250/07.214b 1405 P # 250/07.21	⁶ Li(n,X) ⁴ He	- 325	P				•	<u>A,B,C,D</u>
************************************	$\frac{10}{10}$ R(n X) ⁴ He	-525	₽				•	B,C,D,E
***Map 2014 +1285 •	²³ Na(n _x) ²⁴ Na	1125	₽				•	F
22 Alta p22 Mag 4385 P 4 23 Alta p22 Mag 4385 P 4 23 Alta p22 Mag 4625 F 5 25 Alta p25 Mag 2228 P 144 25 Alta p25 Mag 2228 P 144 25 Alta p25 Mag P 144 25 Alta p26 Mag <t< td=""><td>$^{24}Ma(n,n)^{24}Na$</td><td>1225</td><td>•</td><td></td><td></td><td></td><td>•</td><td>G</td></t<>	$^{24}Ma(n,n)^{24}Na$	1225	•				•	G
82.Man July 1335 P I I 93.Stan July 1335 P I I 93.Stan July 1335 P I I 93.Stan July 2225 P I I 93.Man July 2226 P I I 93.Man July 2226 P I I 93.Man July 2226 P I I 93.Man July 2265 P I I 93.Stan July 2265 P I I 93.Stan July 2265 P I I 93.Stan July 22637 P I I 93.Stan July 22637 P I I 93.Stan July 22637 P I I 93.Stan July 2266 P I I 93.Stan July 2276 P I I 93.Stan July 2276 P I I <td>$\frac{27}{4}$ (n n)²⁷ Ma</td> <td>1325</td> <td></td> <td></td> <td></td> <td>₽</td> <td>•</td> <td>H</td>	$\frac{27}{4}$ (n n) ²⁷ Ma	1325				₽	•	H
************************************	$\frac{27}{\Delta l(n \alpha)^{24}}$ Na	1325				, P	•	H
************************************	$\frac{32}{32}S(n n)^{32}P$	1625					•	
************************************	⁴⁵ Sc(n _y) ⁴⁶ Sc	2126					•	F,K
**Tinp)*So 2283 P ## **Min(n,2)*Min 2625 P ## **Sein(n,2)*Min 2625 P ## **Sein(n,2)*Min 2683 P ## **Sein(n,2)*Min 2683 P ## **Sein(n,2)*Min 2683 P ## **Soin(n,2)*Min 27266 P ## **Soin(n,2)*Min 2742 P ## **Soin(n,2)*Co 27269 # # **Soin(n,2)*Co 2825 P # # **Soin(n,2)*Co 2934 P # # **Soin(n,2)*Co 2935 P #	⁴⁶ Ti(n n) ⁴⁶ Sc	2720				P	•	H,L
***Tin Applesc. 2234* P ·	$\frac{47}{10}$ Ti(n n) ⁴⁷ Sc	2220				L D		H,L
5% Artin, 2% Status 2626 P	⁴⁸ Ti(n n) ⁴⁸ Sc	2220				P	•	н
93Mu(n,24)2Mu 2655 P 2 95Eq(n,p)5Mu 2665 P 2 95Eq(n,p)5Mu 2664 P 2 95Eq(n,p)5Mu 2664 P 2 95Eq(n,p)5Mu 2664 P 2 95Eq(n,p)5Mu 2664 P 2 95Eq(n,p)5Mu 272602726 3 2 95Co(n,p)5Mu 2726027265 3 4 95Co(n,p)5Mu 2726027265 4 4 95Co(n,p)5Mu 2726027265 9 2 95Nu(n,p)5MCo 2726027265 P 2 95Nu(n,p)5MCo 2726027265 P 2 95Nu(n,p)5MCo 28344 P P 2 95Ou(n,p)5MCo 2895 P 2 2 95Ou(n,p)5MCo 2925 P 2 2 95Ou(n,p)5MCo 2934 P	$55Mn(n_{2})$ $54Mn$	2525	P			1		F
************************************	55Mn(n 2n) 54 Mn	2525	E E					M
Total product 2001 1 P F 9856(n,h)9956 2837 P 60 9950(n,h)9950 272692725 40 9950(n,h)9950 272692725 20 9910(n,h)9950 272692725 2 9910(n,h)9950 272692726 2 9910(n,h)9950 272692726 2 9910(n,h)9950 28324825 P 9910(n,h)9950 2834 P 9910(n,h)9950 2834 P 9910(n,h)9950 2834 P 9910(n,h)9950 2895 P 9910(n,h)9950 2895 P 9910(n,h)9950 2895 P 9910(n,h)9950 28925 P 9910(n,h)9910 2994 P 9910(n,h)9910 2994 P 9910(n,h)9910 4112 P <	54 Ee(n n) 54 Mn	2525						
Image: constraint of the second se	$56 E_{0}(n, p) = 0.000 Mn$	2025	I			P		-
¹¹² Edn(h, X) Opa ¹¹² Edn(h, X) Opa ¹¹² Edn(h, X) Opa ¹¹² Opa ¹¹¹² Opa ¹¹¹²	$\frac{58}{58}$ (n $_{2}$) ⁵⁸ Fo	2007		D		F		F,N
Image: Second P Image: Second P Image: Second P Image: Second P Image: Second P Image: Second P Image: Second P Image: Second P Image: Second P Image: Second P	natEo(n X)dpa	2600		F				0,P
	⁵⁹ Co(n n ⁵⁹ Eo	2000	D				-	M
	$\frac{-60(n,p-1,6)}{59}$	2725	F					
	$\frac{-60(n,\gamma)}{59}$	0710				D	•	J
	$\frac{-60(H,a)}{59}$	2712 2726/2725				F		_ J
	58Ni(n n)58Co	E120/2120				D	-	-
	58Ni(n 0n)57Ni	0905			Р	F	•	
	60Ni(n p)60Co	2020	р		ndaro			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	⁶³ Cu(n u) ⁶⁴ Cu	2001	F A					
	- G3 Cu/π ma)62Cu	2925	F (•	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	⁶³ Cu(n,∠n) Gu	2920 6425/2025	(http://			teh gi		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	65Cu(n 2n)64Cu	0400/2020				uur ai		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	647n(n n)64Cu	2901	-F			D	•	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{2\pi(n,p)}{90\pi(n,p)}$	3023		mont				
	$\frac{2}{93}$ Nb(p,u) ⁹⁴ Nb	4020						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{-100(11,\gamma)}{93}$ Nb(n $2n$) $\frac{92}{100}$ Nb	4120	F			Р		
Image: International system P Image: International system 10% Ag(n, y) 110m Ag tandard 4731 h ar catalog/standards/sist/3902b891-0468-41fc-a2ef-bce958db2c1+/astm-e1018 K20 P Image: International system 10% Ag(n, y) 110m Ag tandard 4731 h ar catalog/standards/sist/3902b891-0468-41fc-a2ef-bce958db2c1+/astm-e1018 K20 P Image: International system 10% Ag(n, y) 110m Ag tandard 4731 h ar catalog/standards/sist/3902b891-0468-41fc-a2ef-bce958db2c1+/astm-e1018 K20 P Image: International system 115 In(n, n) 115 In 4932/4931 P Image: International system P 115 In(n, n) 115 In 4932/4931 P Image: International system P 115 In(n, n) 116 In 4932/4931 P Image: International system P 1197 Au(n, 2n) 198 Au 7925 P Image: International system Image: International system 2382 Un(n, f) E.P. 9040 P Image: International system Image: International system 2382 Un, f) E.P. 9228 P Image: International system Image: International system 2382 Un, f) E.P. 9236 P Image: International system Image: International system 2382 Un, f) E.P. 9246 P Image: International system Image: International system 2382 Un, f) E.P. 9246 P Image: International system	93Nb(n n ¹)93mNb	4112					•	Р
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	103Db/p	4112				- P		_ P
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4011				F	•	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	109 A g (p +) 110m A g	andardazinh ai/					db2c14/astm	а1018 КОО
Initial (n,r) Hori P P 115(n(n,r))115(n 4932/4931 P 6 1197Au(n,r)198Au 7925 P 6 197Au(n,r)196Au 7925 - - 232Th(n,f)F.P. 9040 P - - 235U(n,f)F.P. 9228 P - - 235U(n,f)F.P. 9237 P - - 237Np(n,f)F.P. 9346 P - - 2327(n,f)F.P. 9346 P - -	$\frac{Ag(\Pi,\gamma)}{115}$ Ag $\frac{115}{10}$ (n $_{22}$) $\frac{116}{116}$ In	4021					SUUZUI +/aSuiF	C1010 - 20
International P - - 197Au(n,2n) ¹⁹⁸ Au 7925 P 6 197Au(n,2n) ¹⁹⁸ Au 7925 - - 232Th(n,t)F.P. 9040 P - - 235U(n,t)F.P. 9228 P - - 238U(n,t)F.P. 9237 P - - 237Np(n,t)F.P. 9346 P - - 237Np(n,t)F.P. 9346 P - -	115lp(p.p')115lp	4020/4021	F			D	-	Р
	197 Au(n a) 198 Au	7025	D			r -	-	_ C
Automatic Formula Formula Formula F_{232} $\frac{232}{237}$ but (n,f) F.P. 9228 P $\frac{C.D}{238}$ $\frac{238}{238}$ U(n,f) F.P. 9237 P $\frac{C.D}{238}$ $\frac{237}{239}$ but (n,f) F.P. 9346 P $\frac{C}{239}$ 239 Put (n, f) F.P. 9427 P $\frac{C}{2}$	$\frac{Au(1,\gamma)}{197}$ Au (n. 2n) 196 Au	7929	r.				-	-
$-110(h,f) \in P.$ 0000 P -1000 $235 U(n,f) \in P.$ 9228 P 0000 $238 U(n,f) \in P.$ 9237 P 0000 $237 Np(n,f) \in P.$ 9346 P 0000 $239 D(n,f) \in P.$ 0427 P P	$\frac{Au(H, 2H)}{232} Th(n f) E P$	7929	D				-	Р
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23511(p f) E D	3040	- -				-	_ C,D
$\sim - \Theta(h, \mu, \mu) \rightarrow - \Theta(h, \mu) \rightarrow$	²³⁸ I (n f) E P	9220 0227	r.	D				C,D,P
<u></u>	237Np(p f)E D	9201		r.		Р	-	P
	239 Pu(n f) E D	0/27		P			-	-

TABLE 2 Recommended Sources for Several Useful Dosimetry Cross Sections

<u>ID #</u>	Reaction Label	Original Source(s) for Recommended Cross Section	Library_Material ID <u>'</u>	Consistent with IRDFF Library(19, 20)	<u>Target Atom</u> <u>Natural</u> Abundance (%) ^H	Residual Nuclei Half-life	Comment	
<u>1</u>	⁶ Li(n,t) ⁴ He	ENDF/B-VII.1	325	Yes	7.589 (24)	He, stable;	<u>A,B,C</u>	
7	$\frac{{}^{10}B(n,\alpha)^7Li}{{}^{23}N_1}$	CENDL-3	525	No	<u>19.82 (2)</u>	³ He, 12.312 (25) a stable	B,C,E,K	F
22	$\frac{2^{20}Na(n,\gamma)^{2^{4}}Na}{2^{24}Ma(n,\gamma)^{24}Na}$	JENDL-4.0/IRDFF BRDF	1125	NO/Yes	<u>100.</u> 78 951 (12)	<u>14.958 (2) h</u> 14.958 (2) h		, G
24	27 Al(n, α) ²⁴ Na	RRDF	1325	Yes	100.	14.958 (2) h	G	-
25	²⁷ Al(n,p) ²⁷ Mg	RRDF	1325	Yes	100.	9.458 (12) m	G	
<u>30</u>	³² S(n,p) ³² P	RRDF	1625	Yes	95.04074 (88)	14.284 (36) d	G	
<u>33</u>	⁴⁵ Sc(n,γ) ⁴⁶ Sc	FENDL-D/IRDFF	2126	No	<u>100.</u>	<u>83.787 (16) d</u>		D,F
			2125	Yes				
34	⁴⁶ Ti(n,p) ⁴⁶ Sc	RRDF	2225	Yes	<u>8.249 (21)</u>	83.787 (16) d	<i>I,G,J</i>	
36	⁴⁷ Ti(n,p) ⁴⁷ Sc	RRDF	2228	Yes	7.437 (14)	3.3485 (9) d	I,G,J	
39	⁴⁸ Ti(n,p) ⁴⁸ Sc	RRDF	2231	Yes	73.720 (22)	43.67 (9) h	G	
47	55 Mn(n, γ) 54 Mn	IRDFF	2525	Yes	100.	2.57878 (46) h	-	F
48	⁵⁵ Mn(n,2n) ⁵⁴ Mn	RRDF	2525	Yes	100.	2.57878 (46) h	G	_
51	⁵⁴ Fe(n,p) ⁵⁴ Mn	GLUCS-3/RRDF(44)	2625	No/Yes	5.8459 (230)	312.19 (3) d	<u>D,G</u>	

🕼 E1018 – 20

TABLE 2 Continued

		Original Source(s) for	Library Material	Consistent with	Target Atom	Residual Nuclei		
ID #	Reaction Label	Recommended Cross	ID/	IRDFF	Natural	Half-life	Comment	
		Section	-	Library (19, 20)	Abundance (%) ^H			
52	⁵⁶ Fe(n,p) ⁵⁶ Mn	RRDF	2631	Yes	91.7540 (240)	2.57878 (46) h	G	
54	⁵⁸ Fe(n,γ) ⁵⁹ Fe	JENDL/D99(45)/	2637	No/Yes	0.282 (4)	44.495 (9) d	—	D,F,L
		JEFF-3.1						
55	^{nat} Fe(n,X)dpa	ENDF/B-VI.1	NA	Yes	NA	stable	M,N	
56	⁵⁹ Co(n,p ⁵⁹ Fe	RRDF	2725	Yes	100.	44.494 (12) d	G	
57	⁵⁹ Co(n,γ) ⁶⁰ Co	JENDL 4.0/IRDFF	2725	No/Yes	100.	5.2711 (8) a		
58	⁵⁹ Co(n,2n) ⁵⁸ Co	RRDF	2725	Yes	100.	70.85 (3) d	G	
59	⁵⁹ Co(n,α) ⁵⁶ Mn	RRDF	2712	Yes ^O	100.	2.57878 (46) h	G	
60	⁵⁸ Ni(n,2n) ⁵⁷ Ni	ENDF/B-VI	2825	Yes	68.0769 (59)	35.9 (3) h		
61	⁵⁸ Ni(n,p) ⁵⁸ Co	RRDF	2825	Yes	68.0769 (59)	70.85 (3) d	G	
63	⁶⁰ Ni(n,p) ⁶⁰ Co	RRDF	2831	Yes	26.2231 (51)	5.2711 (8) a	G	
64	⁶³ Cu(n,2n) ⁶² Cu	RRDF	2825	Yes	69.174 (20)	9.67 (3) m	G	
65	⁶³ Cu(n,γ) ⁶⁴ Cu	ENDF/B-VI	2925	Yes	69.174 (20)	12.701 (2) h		
66	⁶³ Cu(n,α) ⁶⁰ Co	RRDF	2925	Yes	69.174 (20)	5.2711 (8) a	G	
67	⁶⁵ Cu(n,2n) ⁶⁴ Cu	RRDF	2931	Yes	30.826 (20)	12.7004 (20) h	G	
68	⁶⁴ Zn(n,p) ⁶⁴ Cu	RRDF	3025	Yes	49.1704 (83)	12.7004 (20) h	G	
73	⁶⁴ Zr(n,2n) ⁸⁹ Zr	RRDF	4025	Yes	51.452 (9)	78.42 (13) h	G	
77	⁹³ Nb(n,γ) ^{94[g+(m→g)]} Nb	ENDF/B-VI	4125	Yes	100.	2.03E4 (16)		
78	⁹³ Nb(n,2n) ^{92m} Nb	RRDF	4112	Yes	100.	10.15 (2) d	G	
<u>79</u>	⁹³ Nb(n,n') ^{93m} Nb	RRDF	<u>4112</u>	Yes	100.	<u>16.12 (15) a</u>	N,G	
87	¹⁰³ Rh(n,n') ^{103m} Rh	RRDF	4525	Yes	100.	56.114 (20) m	N,G	
88	¹⁰⁹ Ag(n,γ) ^{110m} Ag	CNDC	4731	Yes	48.1608 (51)	249.78 (2) d	G	
<u>92</u>	$\frac{115}{\ln(n,\gamma)^{116m}}$ ln	ENDF/B-VI	4931	<u>Yes</u> ^O	<u>95.719 (17)</u>	54.29 (17) m		
<u>93</u>	¹¹⁵ ln(n,n') ^{115m} ln	RRDF	<u>4931</u>	Yes	<u>95.719 (17)</u>	4.486 (4) h	N,G	
<u>110</u>	¹⁹⁷ Au(n,γ) ¹⁹⁸ Au	IPPE	7925	Yes	100.	2.6943 (3) d		<i>c</i>
112	¹⁹⁷ Au(n,2n) ¹⁹⁶ Au	7925	7925	Yes	100.	6.1669 (6) d	G	
<u>119</u>	²³² Th(n,f)FP	JENDL 4.0/IRDFF	9040	No/Yes	100.	stable	N	
<u>121</u>	²³⁵ U(n,f)FP	RRDF	9228	Yes	0.72041 (36)	stable		C,G
122	²³⁸ U(n,f)FP	IRDFF	9237	Yes	99.27417 (36)	stable		C,N
<u>123</u>	²³⁷ Np(n,f)FP	RRDF	9346	Yes	<u>NA</u>	stable	N,G	
124	²³⁹ Pu(n,f)FP	IRDFF	9437	Yes	NA	stable	N	

^A The total ^{6-ast}Li ⁴He production is obtained from typically the desired metric. It is obtained by combining the ⁶ENDF/B-VI-Li(n,t) ENDF/B-Viii.0 cross sections by summing(MT=105) with the ⁶MT=105-Li(n,d) (MT=32) and ⁶the MT=4 cross sections Li(n,2np) (MT=41) cross sections. If the sample is not isotopically pure ⁶Li, then the ⁷Li reactions need to be considered, for example, ⁷Li(n,2na) (MT=24) and ⁷subtracting the MT=57 cross sections. Li(n.3na) (MT=25) cross sections.

^B This cross section is a combination of several reaction components. The recommended covariance matrix is taken from the covariance of the predominant reaction component, which is typically the (n, α) or (n, t) component.

^C Use of the ENDF/B-VII.0 standards sub-library is under consideration. This transition is pending treatment of the cross section in energy regions outside the region for which covariance data is given in the standards sub-library.

which covariance data is given in the standards sub-library. ^D The covariance data is taken from IRDF-2002 instead of from ENDF/B-VI because the ENDF covariance data was deliberately eliminated from ENDF/B-VI.8 pending further analysis of correlations in the experimental data base that may not have been adequately taken into account. The covariance still reflects the evaluation data. Multiple recommended libraries are given. Existing experimental data and analysis of the evaluation methodology are not sufficient to identify a single recommended nuclear data evaluation.

^{*E*} The ¹⁰B ⁴He production is obtained from typically the desired metric. It is obtained by combining the ¹⁰ENDF/B VI cross sections by summing the MT=107 and twice the MT=113 cross section. B(n, α) (MT=107) with twice the 10B(n, α) (MT=113) cross section. If the sample is not isotopically pure ¹⁰B, then the ¹¹B reactions need to be considered, for example, ¹¹B(n, α) (MT=107) and ¹¹B(n, α) (MT=22) cross sections.

^F Experience suggests that this sensor may not be consistent with other dosimetry sensors for spectra where the majority of the sensor response comes from neutrons with energies above 10 keV. For fast neutron applications, this sensor should be used with caution while the community examines the issue in more detail.

^G From an IRK evaluation found in IRDF-90(Various versions/releases of the Russian Reactor Dosimetry File (RRDF) (3746)). set of evaluations exist but some of the later releases are not readily available to the public. Since many of the evaluations in this library were funded by the IAEA with the intention of providing a dosimetry-oriented evaluation for the IRDFF, the most accessible source of these evaluations are from the ENDF-6 format IRDFF file itself.

^H From an update to the Natural abundance data from Ref 37RRDF-98 library used in IRDF-2002.

⁷ The latest GLUCS-3 cross section (material ID 38) is the same as that ENDF-6 format 30 found in the IRDF-2002 except for a small difference in the reaction threshold energy and a different covariance representation. MAT identifier and is used in both the source evaluation and in the IRDFF library to identify the target nuclei.

^J The literature has a conflict in the pedigree/source of the IRDF-2002 evaluation since it does not originate from ENDF/B-VI released libraries and special purpose dosimetry libraries were eliminated from the ENDF/B-VI release process. The IRDF-2002 documentation states that this cross section comes from the IRDF-90 library, but it does not use exactly the same representation as is found in the IRDF 90 library.

^{*K*} From a CNDC evaluation.

^JYou must consider the (n, np) <u>Consider the (n, np)</u> interference reactions on other titanium isotopes for neutron energies above 10 MeV. An alternative approach is to use a cross section that combines the appropriate titanium (n,p) and (n, np) reactions. This cross section has a target of the natural element and includes all reaction channels that result in the same primary residual nucleus. This type of combined reaction isoften is <u>often</u> denoted as ^{nat}Ti(n,X) ⁴⁶Sc, ^{nat}Ti(n,X) ⁴⁷Sc. ^K This reaction is not included in the IRDF-2002 library-evaluation deviated from the IRDFF 1.05 selection and was selected in order to be consistent with the ENDF/B-VII.1 Standards version of this reaction cross section.

^L The natural abundance of ⁵⁸Fe has changed considerably over the last 25 years. This makes it difficult to ensure that the abundance value used in the evaluation is the same as is used in the interpretation of the ⁵⁸Fe activation product. The ⁵⁸Fe natural abundance value consistent with the time of this evaluation and release were done in 0.282(4) %

^M The iron dpa is taken from Practice E693E683-01.-17.

^N The importance of interference by photon-induced reactions should be considered.

^o The file ID number, MAT, has been changed in the ASTM library to avoid a conflict between evaluations taken from different libraries. In the case of These evaluations in the IRDFF library reflect insignificant format changes from the cited source ⁵⁹Co, the number 2725 was changed to 2726. In the case of evaluation. ⁵⁸Ni, the number 2825 in RRDF-2002 was changed to the original RRDF-98 MAT of 6433.