

Designation: D2940/D2940M - 15 <u>D2940/D2940M - 20</u>

Standard Specification for Graded Aggregate Material Forfor Bases or Subbases for Highways or Airports¹

This standard is issued under the fixed designation D2940/D2940M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the U.S. Department of Defense.

1. Scope-Scope*

1.1 This specification covers quality-controlled graded aggregates that, when hauled to and properly spread and compacted on a prepared grade to appropriate density standards, may be expected to provide adequate stability and load support for use as highway or airport bases or subbases.

Note 1—The engineer is cautioned to provide appropriate construction specifications to ensure compaction to an extent that further densification from traffic loadings on the completed pavement will be insignificant. The method suggested is to require compaction on a firm foundation of a short control strip of the material at a suitable moisture content, by means of vibratory or other proven effective rollers or tampers, until no further increase in density results. Compaction requirements should ensure that an average density of certain appropriate percentages of the control strip maximum density be achieved on the balance of the job; for base courses, 98%98% is suggested as the minimum average requirement.

- 1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.
- 1.3 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.
- 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety safety, health, and health environmental practices and determine the applicability of regulatory limitations prior to use.
- 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

https://standards.iteh.ai/catalog/standards/sist/bf3dbdc5-4c44-4e1e-91fa-8cf7ef36c505/astm-d2940-d2940m-20

2. Referenced Documents

2.1 ASTM Standards:²

C117 Test Method for Materials Finer than 75-µm (No. 200) Sieve in Mineral Aggregates by Washing

C136C136/C136M Test Method for Sieve Analysis of Fine and Coarse Aggregates

D75D8 Practice for Sampling Aggregates Terminology Relating to Materials for Roads and Pavements

D422D75/D75M Test Method for Particle-Size Analysis of Soils Practice for Sampling Aggregates (Withdrawn 2016)

D2419 Test Method for Sand Equivalent Value of Soils and Fine Aggregate

D4318 Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

D4792D4792/D4792M Test Method for Potential Expansion of Aggregates from Hydration Reactions

D5821 Test Method for Determining the Percentage of Fractured Particles in Coarse Aggregate

D7928 Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer)

E105 Practice for Probability Sampling of Materials

¹ This specification is under the jurisdiction of ASTM Committee D04 on Road and Paving Materials and is the direct responsibility of Subcommittee D04.50 on Aggregate Specifications.

Current edition approved June 1, 2015May 1, 2020. Published July 2015May 2020. Originally approved in 1971. Last previous edition approved in 20092015 as D2940/D2940M – 09.D2940/D2940M – 15. DOI: 10.1520/D2940 D2940M-15.10.1520/D2940 D2940M-20.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

E122 Practice for Calculating Sample Size to Estimate, With Specified Precision, the Average for a Characteristic of a Lot or Process

3. Terminology

3.1 For definitions of terms used in this standard, see Terminology D8.

4. General Requirements

4.1 Coarse aggregate retained on the 4.75-mm (No. 4) sieve shall consist of durable particles of crushed stone, gravel, or slag capable of withstanding the effects of handling, spreading, and compacting without degradation productive of deleterious fines. Of the particles which are retained on a 9.5-mm [(3/s-in.]-in.) sieve, at least 75%75 % shall have two or more fractured faces.

Note 2—No standard ASTM method is recognized to be capable of measuring the quality, or tendency of coarse aggregate to degrade to the extent that deleterious fines may be produced. Some local jurisdictions have developed tests believed to be of value in this respect. The purchaser of material under this specification is advised to investigate the availability and reliability of such tests in order to specify quality requirements appropriate to the local area.

- 4.1.1 The fractured particle requirement of 3.14.1 is modified when specified in the contract documents, providing for the use of another method for measuring interparticle friction which has been correlated with good field performance.
- 4.2 Fine aggregate passing the 4.75-mm (No. 4) sieve shall normally consist of fines from the operation of crushing the coarse aggregate. Where available and suitable, addition of natural sand or finer mineral matter, or both, is not prohibited. The fraction of the final mixture that passes the 75- μ m (No. 200) sieve shall not exceed 60 % of the fraction passing the 600- μ m (No. 30) sieve. The fraction passing the 425- μ m (No. 40) sieve shall have a liquid limit no greater than 25 and shall have a plasticity index no greater than 4. The sand equivalent value of the fine aggregate shall be no lower than 35.
- 4.2.1 For material to be used as a subbase at a greater depth than probable frost penetration, the plasticity index and sand equivalent requirements are modified to a maximum of 6 and a minimum of 30, respectively.
- 4.3 The gradation of the final composite mixture shall conform to an approved job mix formula, within the design range prescribed by Table 1, subject to the appropriate tolerances; tolerances and to the acceptance criteria described in Section 45. The job mix formula shall be established prior to the beginning of the work and shall not be changed without the approval of the engineer or histheir authorized representative.

Note 3—The job mix formula should be selected with due consideration to the footnotes appended to Table 1. In general, a plotted graph of the fine aggregate portion should be reasonably parallel to a plot of the nearest grading limit of the design range.

ASTM D2940/D2940M-20

https://standards.itch.ai/catalog/stan TABLE 1 Grading Requirements for Final Mixtures: 136c505/astm-d2940-d2940m-20

Sieve Size (Square Openings)	Design Range ^A (Mass Percentages Passing)		Job Mix Toler- <u>Tolerances</u> ances (Mass Percentages Passing)	
	Bases	Sub- Subbases bases	Bases	Sub- Subbases bases
50 mm [2 in.] 50 mm (2 in.) 37.5 mm [1½ in.] 37.5 mm (1½ in.) 19.0 mm (¾ in.) 9.5 mm [¾ in.] 9.5 mm (¾ in.) 4.75 mm (No. 4) 600 μm (No. 30)	100 95 to 100 95 to 100 70 to 92 70 to 92 50 to 70 35 to 55 12 to 25	100 90 to 100 90 to 100 30 to 60 	와 의 # # # # # # # # # # # # # # # # # #	-3 -3 ±5 ±5 ::: ::: ::: ±10 :::
600 μm (No. 30) 75 μm (No. 200)	12 to 25 0 to 8 ^B	0 to 12 ^B	<u>±5</u> ±3	±5

^A Select the Job Mix Formulajob mix formula with due regard to availability of materials and service requirements of project. Test results outside the design range are not prohibited, provided they are within the job mix tolerances. ^B Determine by wet sieving. Where local environmental conditions (temperature and availability of free moisture) indicate that in order to prevent damage by frost action it is necessary to have lower percentages passing the 75-µm (No. 200) sieve than permitted in Table 1, appropriate lower percentages shall be specified. When specified, the material having a diameter smaller than 20 µm shall not exceed 3 mass %.

4.4 Aggregates that contain components subject to hydration, such as steel slags, shall be obtained from sources approved by the engineer on the basis of either a satisfactory performance record, or of aging or other treatment known to reduce potential expansion to a satisfactory level, or of expansion values not greater than 0.50 % at seven days when tested in accordance with Test Method D4792D4792M.

5. Sampling

- 5.1 Sample each unit, or batch selected, to be tested for compliance with the above requirements in accordance with Practice D75D75/D75M. A batch shall be defined as the amount of material required to fill at least one normal sized normal-sized haul truck.
- 5.2 Base acceptance decisions upon average results obtained on samples from at least three units or batches picked at random from each lot. A lot shall be defined as not more than 3000 metric tons [3300 tons] or a full day's production for delivery to a given project.
- 5.3 In the case of grading, test each sample separately. Average values of all sieve size determinations for a given lot shall comply with the job mix formula within the permissible tolerances shown. Results of individual batch determinations shall conform to the job mix formula with the tolerances of Table 1, and an additional tolerance of 2 percentage points for all sizes other than 75-µm (No. 200) sieve; noncompliance shall necessitate that the entire lot be resampled or rejected.
- 5.4 In case of requirements other than grading, the sampling frequency and lot size shall be designated by the specifying agency. Make at least three determinations to represent a lot. Base acceptance or rejection on the average of all determinations for a lot.

6. Test Methods

- 6.1 Sample the material and determine the properties enumerated in this specification in accordance with the following methods:
- 6.1.1 Sampling—Practice D75D75/D75M.
- Note 4—Attention is also called to Practices E105 and E122.
- 6.1.2 Grain-Size Analysis (Dry Sieving)—Test Method C136C136/C136M.
- 6.1.3 Grain-Size Analysis (Wet Sieving)—Test Method C117.
- 6.1.4 Grain-Size Analysis (Wet Sieving and Determination of Subsieve Size Fractions, by Hydrometer (Hydrometer Analysis)—Test Method D422D7928.
 - 6.1.5 *Liquid Limit*—Test Method D4318.
 - 6.1.6 Plastic Limit and Plasticity Index—Test Method D4318.
 - 6.1.7 Sand Equivalent Value—Test Method D2419.
 - 6.1.8 Expansion—Test Method D4792D4792/D4792M when required for source approval.
 - 6.1.9 Fractured Particles—Test Method D5821.

7. Keywords

7.1 aggregate; base course; subbase; coarse aggregate; fine aggregate aggregate; subbase

SUMMARY OF CHANGES

Subcommittee D04.50 has identified the location of selected changes to this standard since the last issue (D2940/D2940M – 15) that may impact the use of this standard. (Approved May 1, 2020.)

- (1) Added Terminology, Section 3.
- (2) Revised 4.3 and 4.4.
- (3) Replaced brackets with parentheses for alternate sieve size designations in Table 1.
- (4) Removed references to D422 from Section 2 and 6.1.3.
- (5) Added C117 to Section 2 and 6.1.3.
- (6) Added D7928 to Section 2 and 6.1.4.