International Standard

Rubber compounding ingredients — Carbon black — Determination of specific surface area — Nitrogen adsorption methods

Ingrédients de mélange du caoutchouc — Noir de carbone — Détermination de la surface spécifique — Méthodes par adsorption d'azote iTeh STANDARD PREVIEW

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION®MEXCHAPODHAR OPPAHИЗАЦИЯ ПО СТАНДАРТИЗАЦИЙ®ORGANISATION INTERNATIONALE DE NORMALISATION

First edition - 1981-12-01

<u>ISO 4652:1981</u> https://standards.iteh.ai/catalog/standards/sist/d7ca6242-7acf-4734-894a-4f8a35540b98/iso-4652-1981

(standards.iteh.ai)

UDC 678.046.2 : 543.8

Descriptors : rubber industry, carbon black, chemical analysis, determination, absorptivity, nitrogen, test equipment, test results.

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO member bodies). The work of developing International Standards is carried out through ISO technical committees. Every member body interested in a subject for which a technical committee has been set up has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council.

International Standard ISO 4652 was developed by Technical Committee ISO/TC 45, IEW Rubber and rubber products, and was circulated to the member bodies in March 1980.

It has been approved by the member bodies of the following countries :

		ICO 4650,1001
Austria	France	Romania
Belgium	nttps:Germany.srt.Rh.ai/cata	log/starSouth Africa, aRep2 of act-4734-894
Brazil	Hungary 4f8a3	5540b%pain 4652-1981
Bulgaria	India	Sweden
Canada	Italy	Turkey
China	Korea, Rep. of	United Kingdom
Czechoslovakia	Mexico	USA
Denmark	Netherlands	USSR
Foynt, Arab Rep. of	Poland	

No member body expressed disapproval of the document.

© International Organization for Standardization, 1981

Printed in Switzerland

INTERNATIONAL STANDARD

Rubber compounding ingredients — Carbon black — Determination of specific surface area — Nitrogen adsorption methods

1 Scope and field of application

This International Standard specifies two methods for the determination of the specific surface area of types and grades of carbon black for use in the rubber industry.

2 Reference

ISO 1126, Carbon black for use in the rubber industry – Determination of loss on heating. **3.2.2 Liquid nitrogen** (approximately 300 cm³ are required for the determination).

3.3 Apparatus

iTeh STANDARD 3.3.1 RNi-Count-1 specific surface area apparatus¹) (see figures 1 and 2), or an equivalent one-point adsorption (standards.itapparatus.)

mination of loss on heating. ISO 4652:1981 **3.3.2** Heater and voltage control device, capable of maintaining a temperature of 300 ± 10 °C, for degassing the test https://standards.iteh.ai/catalog/standards/sist/d/rang/42-7act-4734-894a-

3 Method A using Ni-Count-1 apparatus

3.1 Principle

Degassing of a test portion, weighing and exposure to nitrogen in the presence of liquid nitrogen. Determination of the amount of nitrogen adsorbed onto the carbon black surface at equilibrium. From this value and the mass of the degassed test portion, calculation of the specific surface area.

3.2 Reagents

3.2.1 Nitrogen, in a cylinder, or other source of prepurified nitrogen, of recognized analytical quality.

The nitrogen supply to the Ni-Count-1 apparatus (see 3.3.1) shall be controlled at a pressure of 70 to 140 kPa. If nitrogen from a cylinder is used, the cylinder shall be fitted with a two-stage regulator capable of controlling the outlet pressure in the specified range.

[The heater (see figure 1) is furnished with the Ni-Count-1 apparatus.]

3.3.3 Vacuum pump, capable of an ultimate pressure of $1,3 \times 10^{-2}$ Pa (1 $\times 10^{-4}$ mmHg).

3.3.4 Dewar flask, of capacity approximately 265 cm³ and height 145 mm.

(This is supplied with the Ni-Count-1 apparatus.)

3.3.5 Nitrogen vapour pressure thermometer (see figure 2).

(This constitutes a part of the Ni-Count-1 apparatus.)

3.3.6 Sample tubes (see figure 3).

The recommended volumes are given in table 1.

1) The Ni-Count-1 apparatus is available commercially. Details may be obtained from the Secretariat of ISO/TC 45 (BSI) or ISO Central Secretariat.

3.3.7 Stopcock grease or polychlorotrifluoroethylene lubricant.

(This is supplied with the Ni-Count-1 apparatus.)

3.3.8 Fine glass wool.

3.3.9 Analytical balance, accurate to 0,1 mg.

3.4 Preparation of the sample

Pellets of carbon black need not be crushed. Unagitated, unpelletized carbon black may be densified if desired.

3.5 Test conditions

The test should preferably be carried out in ambient conditions of either 23 \pm 2 °C and 50 \pm 5 % relative humidity or 27 \pm 2 °C and 65 \pm 5 % relative humidity.

The reagents and the apparatus shall be maintained at temperature equilibrium in the same room for at least 24 h before being used.

The testing room shall be free from fumes or vapours which could contaminate the reagents and apparatus, and thus affect R the results.

3.6 Procedure

SO 4652:19

3.6.1 Preparation and calibration of apparatus atalog/standards/

4f8a35540b98/iso **3.6.1.1** The all metal Ni-Count-1 apparatus has an adjusted internal volume of 139,5 cm³. This internal volume includes all lines to the sample valve, and the volume in the bellows of the pressure gauge is adjusted so that the gauge indicates 66,7 kPa (500 mmHg) at a room temperature of 27 °C. The tables of surface area versus pressure (furnished with the Ni-Count-1 apparatus) will yield accurate specific surface areas if the internal volume of the instrument has been accurately adjusted at the factory to 139,5 cm³. To confirm the volume, it is recommended that tests be made on a standard reference black¹) having an agreed nitrogen surface area independently determined by a multipoint method.

3.6.1.2 The Ni-Count-1 apparatus should be prepared as specified in the instructions furnished with the apparatus. This includes filling the nitrogen vapour pressure thermometer (3.3.5) with the prepurified nitrogen gas (3.2.1), evacuating the case of the large pressure gauge and closing the case valve,

flushing the reservoir and vacuum manifolds several times with nitrogen until air is eliminated, and controlling the voltage to the heaters to maintain a temperature of 300 \pm 10 °C as measured with a thermometer in the heater well.

If air is at any time admitted to the reservoir, the purging shall be repeated.

3.6.1.3 The calibration and accuracy of the equipment should be checked by tests on standard reference blacks.¹⁾

3.6.2 Determination

3.6.2.1 Using the data in table 1 as a guide, select the proper sample tube and take the appropriate mass of test portion. If the identity of the black is not known, carry out a preliminary test to determine the mass of the black which will give an adsorption pressure between 20,0 and 33,3 kPa (150 and 250 mmHg).

3.6.2.2 Weigh, to the nearest 0,1 mg, a tuft of the glass wool (3.3.8) of suitable size to support the filler tube in the sample tube stem. Record the mass.

3.6.2.3 Weight to the nearest 0,1 mg, a clean dry sample tube (3.3.6) with its filler and glass wool tuft. Record the mass (m_1) .

standards.itch.ai) 3.6.2.4 Roughly weigh the test portion. (This is the nondegassed mass and is not used in the calculation.)

3.6.2.5¹⁰ Place the test portion in the sample tube (3.3.6), introduce the tuft of glass wool and push in the filler rod to its proper position.

3.6.2.6 Sparingly lubricate the ball joint of the sample tube with the high-vacuum grease (3.3.7), taking care not to place lubricant inside the stem. Fit the sample tube ball into the mating metal receptacle on the Ni-Count-1 apparatus and retain the sample tube in place with the metal spring clip.

3.6.2.7 Start the evacuation of the sample tube through the vacuum manifold and raise the heater around the tube to degas the test portion at 300 \pm 10 °C.

3.6.2.8 Momentarily purge the test portion, several times during the evacuation, with nitrogen gas. To do this, close the valve to the vacuum pump and momentarily open the valve from the nitrogen supply to the vacuum manifold; then resume evacuation.

1) Standard reference blacks will form the subject of ISO 6809.

3.6.2.9 Close the vacuum valve and observe the leak detector to determine whether gases are still evolving from the test portion. If the test portion is properly degassed, the leak indicator should not show a change of pressure greater than 0,1 kPa (1 mmHg) over 5 min.

3.6.2.10 Isolate the degassed test portion from the vacuum manifold by closing the valve. Remove the heater.

3.6.2.11 If the pressure in the purged nitrogen reservoir is above 65,7 kPa (493 mmHg) at 23 °C [or above 66,7 kPa (500 mmHg) at 27 °C] evacuate to a lower pressure. Complete evacuation is not necessary unless air has been permitted to enter.

Fill the purged reservoir gauge and manifold with nitrogen gas to a pressure of 65,7 kPa (493 mmHg) if the temperature is 23 °C, or to 66,7 kPa (500 mmHg) if the temperature is 27 °C. For each degree respectively above or below the indicated temperatures, add or subtract 0,222 kPa (1,67 mmHg) from the specified pressures.

3.6.2.12 Open the valve from the nitrogen reservoir to the sample tube by rotating through three complete turns.

í l'eh STANDA 3.6.2.13 Place the Dewar flask (3.3.4) filled with liquid nitrogen (3.2.2) around the sample tube. (standards.iteh.ai) is the correlating factor, obtained from table 3;

3.6.2.14 Permit the adsorption to proceed until the pressure 2:1981 indicated by the large gauge becomes constant/catalog/standards/sist/d7with4filleracf-4734-894a-

4f8a35540b98/iso-4652 Observe and record the pressure to the nearest 0,1 kPa (1 mmHg). Ensure the liquid nitrogen surface is at the proper level on the tube stem. (If a variable stem correction is used in the calculations, measure and record the exposed stem length.)

3.6.2.15 Lower the Dewar flask from the sample tube and place it around the sensing element of the nitrogen vapour pressure thermometer (3.3.5).

3.6.2.16 After the gauge pressure of the nitrogen vapour pressure thermometer has become constant, observe the pressure and record its value to the nearest 0,1 kPa (1 mmHg).

3.6.2.17 Allow the sample tube to warm to above the temperature of water vapour condensation on the tube. The warming process can be hastened by gentle heating.

3.6.2.18 Add nitrogen gas to the reservoir and sample tube until the pressure gauge reads approximately 1,3 kPa (10 mmHg) above barometric pressure.

Close the valve to the sample tube and remove the tube.

3.6.2.19 Open the valve to the sample tube connection to equalize the nitrogen reservoir pressure with atmospheric pressure. Read the gauge to the nearest 0,1 kPa (1 mmHg) and record the pressure. Close the valve.

3.6.2.20 As thoroughly as possible, wipe the vacuum grease from the sample tube ball and any moisture from the tube exterior.

Weigh the tube (containing the dry and degassed test portion, glass wool and filler rod) to the nearest 0,1 mg. Record the mass (m_2) .

3.6.2.21 Add the value obtained in 3.6.2.16 to the barometric pressure to obtain the vapour pressure $P_{\rm N}$ for use in table 2 to obtain the liquid nitrogen temperature correction factor, B.

3.7 Expression of results

Calculate the specific surface area, $S_{\rm m}$, in square metres per gram, from the formula

$$S_{\rm m} = \frac{S}{m} \left[1 - F \left(V_{\rm t} - V_{\rm dt} - V_{\rm gw} - \frac{m}{\varrho} \right) \right] H$$

where

S is the surface area at the equilibrium pressure, obtained from table 3:

m is the mass, in grams, of the dry and degassed test portion $(m_2 - m_1);$

 $V_{\rm t}$ is the volume, in cubic centimetres, of the sample tube

 $V_{dt}^{[98]}$ is the volume, in cubic centimetres, in the sample tube stem with filler inserted, above the surface of the liquid nitrogen;

 $V_{\rm dw}$ is the volume, in cubic centimetres, of the glass wool tuft, calculated from its mass and the assumed density of $2,3 \text{ g/cm}^3;$

 ϱ is the density, in megagrams per cubic metre, of carbon black, assumed to be equal to 1,8 Mg/m³;

B is the liquid nitrogen temperature correction factor, obtained from table 2.

Express the result to the nearest 0,1 m²/g.

3.8 Test report

The test report shall include the following information :

a) a reference to this International Standard (indicating "method A");

- b) complete identification of the sample;
- the conditions of test: c)
- the mass of test portion used; d)
- the result and the method of expression used. e)

Figure 2 - Nitrogen vapour pressure thermometer

NOTE - Mark the tube and filler identically.

Figure 3 – Loading funnel and glass sample tube

 Table 1 — Recommended sample tube volumes and masses of test portions for common grades of pressed and pelleted carbon blacks

Carbon black	Specific	Sample tu	Mass of	
group	surface area m²/g	Cm ³	Pelleted cm ³	test portion g
N 900 (formerly MT)	20 to 6 ISO 4	652:1 5 to 30	10 to 25	10 to 15
N 600 (formerly GPF)	s.iteh.ai/catalog/star	dards/s ²³ /d7ca624	2-7acf-4734-894a-	5,3
N 500 (formerly FEF)	4f8f35540b9)8/iso-4 85 2-1981	9	3,6
N 300 — S 300 (formerly HAF)	80	10	5.5	20
N 200 - S 200 (formerly				2,0
ISAF)	110	7,5	4,5	1,5
N 100 (formerly SAF)	140	5,0	3,5	1.1

Table 2 - Liquid nitrogen temperature correction factor

NOTE – The liquid nitrogen temperature correction factor, B, is derived from the formula

$$1 + 0,057 3 \left[\frac{(P_{\rm N} - 98,7)}{13,3} \right]$$

where

 $P_{\rm N}$ is the vapour pressure, in kilopascals, of pure nitrogen at the nitrogen adsorption temperature, measured by means of the nitrogen vapour pressure thermometer (3.3.5);

98,7 is the barometric pressure, in kilopascals, during calibration of the apparatus to determine the surface area S at the equilibrium pressure (see table 3).

If the pressure is expressed in millimetres of mercury, the above formula becomes

4		0 057 2	$(P_{\rm N} - 740)$
1	+	0,057 3	100

Nitro vapour P	ogen pressure N	Correction factor	Nitro vapour (P	ogen oressure N	Correction factor	Nitro vapour P	ogen pressure N	Correction factor	Nitro vapour P	ogen pressure N	Correction factor R					
mmHg	kPa	B	mmHg	kPa	B	mmHg	kPa	D	mmHg	kPa	<u>и</u>					
660	88,0	0,954 16	695	92,7	0,974 22	730	97,3	0,994 27	765	102,0	1,014 32					
661	88,1	0,954 73	696	92,8	0,974 79	731	97,5	0,994 84	766	102,1	1,014 90					
662	88,3	0,955 31	697	92,9	0,975 36	732	97,6	0,995 42	767	102,3	1,015 47					
663	88,4	0,955 88	698	93,1	0,975 93	733	97,7	0,995 99	768	102,4	1,016 04					
664	88,5	0,956 45	699	93,2	0,976 51	734	97,9	0,996 56	769	102,5	1,016 62					
665	88,7	0,957 03	700	93,3	-0,977 08	735	98,0	0,997-14	770	102,7	1,017 19					
666	88,8	0,957 60	701	93,5	0,977 65	736	98,1	0,997 71	771	102,8	1,017 76					
667	88,9	0,958 17	702	93,6	0,978,23	737	98,3	0,998 28	772	102,9	1,018 34					
668	89,1	0,958 74	703	93,7	0,978 80	738	98,4	0,998 85	773	103,1	1,018 91					
669	89,2	0,959 32	704	93,9	0,979 37	739	98,5	0,999 43	774	103,2	1,019 48					
670	89,3	0,959 89	705	94,0	0,979 95	740	98,7	1,000 00	775	103,3	1,020 05					
671	89,5	0,960 46	706 ¹⁰¹	05.94,1 a/0	0,980 52	105/547070	a02 98,8 7a	1,000 57 40	776	103,5	1,020 63					
672	89,6	0,961 04	707	94,3	0,981 09	742	98,9	1,001 15	777	103,6	1,021 20					
673	89,7	0,961 61	708	94,4	0,981 66	743	99,1	1,001 72	778	103,7	1,021 77					
674	89,9	0,962 18	709	94,5	0,982 24	744	99,2	1,002 29	77 9	103,9	1,022 35					
675	90,0	0,962 76	710	94,7	0,982 81	745	99,3	1,002 86	780	104,0	1,022 92					
676	90,1	0,963 33	711	94,8	0,983 38	746	99,5	1,003 44	781	104,1	1,023 49					
677	90,3	0,963 90	712	94,9	0,983 96	747	99,6	1,004 01	782	104,3	1,024 07					
678	90,4	0,964 47	713	95,1	0,984 53	748	99,7	1,004 58	783	104,4	1,024 64					
679	90,5	0,965 05	714	95,2	0,985 10	749	99,9	1,005 16	784	104,5	1,025 21					
680	90,7	0,965 62	715	95,3	0,985 68	750	100,0	1,005 73	785	104,7	1,025 78					
681	90,8	0,966 19	716	95,5	0,986 25	751	100,1	1,006 30	786	104,8	1,026 36					
682	90,9	0,966 77	717	95,6	0,986 82	752	100,3	1,006 88	787	104,9	1,026 93					
683	91,1	0,967 34	718	95,7	0,987 39	753	100,4	1,007 45	788	105,1	1,027 50					
684	91,2	0,967 91	719	95,9	0,987 97	754	100,5	1,008 02	789	105,2	1,028 08					
685	91,3	0,968 49	720	96,0	0,988 54	755	100,7	1,008 59	790	105,3	1,028 65					
686	91,5	0,969 06	721	96,1	0,989 11	756	100,8	1,009 17	791	105,5	1,029 22					
687	91,6	0,969 63	722	96,3	0,989 69	757	100,9	1,009 74	792	105,6	1,029 80					
688	91,7	0,970 20	723	96,4	0,990 26	758	101,1	1,010 31	793	105,7	1,030 37					
689	91,9	0,970 78	724	96,5	0,990 83	759	101,2	1,010 89	794	105,9	1,030 94					
690	92,0	0,971 35	725	96,7	0,991 41	760	101,3	1,011 46	795	106,0	1,031 51					
691	92,1	0,971 92	726	96,8	0,991 98	761	101,5	1,012 03	796	106,1	1,032 09					
692	92,3	0,972 50	727	96,9	0,992 55	762	101,6	1,012 61	797	106,3	1,032 66					
693	92,4	0,973 07	728	97,1	0,993 12	763	101,7	1,013 18	798	106,4	1,033 23					
694	92,5	0,973 64	729	97,2	0,993 70	764	101,9	1,013 75	799	106,5	1,033 81					

Table $\mathbf{3}$ – Values of F and S for observed equilibrium pressures

	area	S	114,7	114,1	113,4	112,8	112,1	111,5	110,8	110,2	109,6	108,9	108,3	107,7	107,1	106,4	105,8	105,2	104,6	104,0	103,4	102,8	102,1	101,5	100,9	100,4	9 0 ,8	99 , 2	98,6	98,0	97,4	96,8	96,3	95,7	95,1	94,6	94,0	93,4	92,9	92,3	91,8	91,2
Corre-	factor	F	0,031 88	0,032 16	0,032 44	0,032 72	0,033 01	0,033 30	0,033 59	0,033 88	0,034 18	0,034 48	0,034 79	0,035.09	0,035 41	0,035 72	0,036 04	0,036 36	0,036 68	0,037 01	0,037 34	0,037 67	0,038 01	0,038 36	0,038 70	0,039 05	0,039 40	0,039 76	0,040 12	0,040 49	0,040.86	0,041 23	0,041 61	0,042 00	0,042 38	0,042 78	0,043 17	0,043 57	0,043 98	0,044 39	0,044 81	0,045 23
rium	ane	kPa	34,6	34,7	34,9	35,0	35,1	35,3	35,4	35,5	35,7	35,8	35,9	36,1	36,2	36,3	36,5	36,6	36,7	36,9	37,0	37,1	37,3	37,4	37,5	37,7	37,8	37,9	38,1	38,2	38,3	38,5	38,6	38,7	38,9	39,0	39,1	39,3	39,4	39,5	39,7	39,8
Equilib	press	mmHg	260	261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280	281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	5 36	297	298	299
Curfann	area	S	143,3	142,5	141,7	141,0	140,2	139,5	138,7	138,0	137,2	136,5	135,7	135,0	134,2	133,5	132,8	132,1	131,3	130,6	129,9	129,2	128,4	127,7	127,0	126,3	125,6	124,9	124,2	123,5	122,8	122,1	121,5	120,8	120,1	119,4	118,7	118,1	117,4	116,7	116,1	115,4
Corre-	lating factor	F	0,022 63	0,022 82	0,023 02	0,023 22	0,023 42	0,023 62	0,023 82	0,024 02	0,024 23	0,024 44	0,024 65	0,024 86	0,025 07	0,025 29	0,025 50	0,025 72	0,025 94	0,026 16	0,026 39	0,026 61	0,026 84	0,027 07	0,027 31	0,027 54	0,027 78	0,028 02	0,028 26	0,028 50	0,028 74	0,028 99	0,029.24	0,029 50	0,029 75	0,030 01	0,030 27	0,030 53	0,030 79	0,031 06	0,031 33	0,031 60
rium	ure	kРа	29,3	29,4	29,5	29,7	29,8	29,9	30,1	30,2	30,3	30,5	30,6	30,7	30,9	31,0	31,1	31,3	31,4	31,5	31,7	31,8	31,9	32,1	32,2	32,3	32,5	32,6	32,7	32,9	33,0	33,1	33,3	33,4	33,5	33,7	33,8	33,9	34,1	34,2	34,3	34,5
Equilib	press	mmHg	220	21	22	523	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259
Curfana	area	S	176,3	175,4	174,5	173,7	172,8	171,9	171,0	170,2	169,3	168,5	167,6	166,8	165,9	165,1	164,2	163,4	162,5	1 61, 7	160,9	160,0	159,2	158,4	157,6	156,8	155,9	155, 1	154,3	153,5	152,7	151,9	151,1	150,3	149,5	148,7	147,9	147,2	146,4	145,6	144,8	144,0
Corre-	lating factor	F	0,015 98	0,016 12	0,016 26	0,016 41	016 56	0,016 70	0,016 85	0,017 00	0,017 15	0,017 31	0,017 46	0,017.61	0,017 77	0,017 93	0,018 08	0,018 24	0,018 40	0,018 56	0,018 73	0,018 89	0,019 05	0,019 22	0,019 39	0,019 56	0,019 73	0,019 90	0,020 07	0.020 24	0,020 42	0,020 59	0,020 77	0,020 95	0,021 13	0,021 31	0,021 50	0,021 68	0,021 87	0,022 06	0,022 25	0,022 44
rium	ure	kPa	23,9	24,1	24,2	24,3	24,5	24,6	24,7	24,9	25,0	25,1	25,3	52 ⁴	25,52	25,75	25,84	25,95	50, <u>1</u> 8	26,20	26,33	26,5	26,65	26,78	26,9	27,0	27,1	27,3	27,4	27,5	27,7	27,8	27,9	28,1	28,2	28,3	28,5	28,6	28,7	28,9	29,0	29,1
Equilib	press	mmHg	180	181	182	8	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219
Surface	area	S	213,8	212,8	211,8	210,8	209,8	208,8	207,9	206,9	205,9	204,9	204,0	203,0	202,0	201,1	200,1	199,2	198,2	197,3	196,3	195,4	194,5	193,5	192,6	191,7	190,7	189,8	188,9	188,0	187,1	186,1	185,2	184,3	183,4	182,5	181,6	180,7	179,8	178,9	178,1	177,2
Corre-	lating factor	F	0,010 94	0,011 05	0,011 17	0,011 28	0,011 39	0,011 51	0,011 62	0,011 73	0,011 85	0,011 97	0,012 08	0,012 20	0,012 32	0,012 44	0,012 56	0,012 68	0,012 80	0,012 93	0,013 05	0,013 17	0,013 30	0,013 42	0,013 55	0,013 68	0,013 81	0,013 93	0,014 06	0,014 19	0,014 33	0,014 46	0,014 59	0,014 73	0,014 86	0,015.00	0,015 13	0,015 27	0,015 41	0,015 55	0,015 69	0,015 83
ium	lre	kPa	18,6	18,7	18,9	19,0	19,1	19,3	19,4	19,5	19,7	19,8	19,9	20,1	20,2	20,3	20,5	20,6	20,7	20,9	21,0	21,1	21,3	21,4	21,5	21,7	21,8	21,9	1, 1	27,2	22,3	22,5	22,6	22,7	22,9	23,0	3,1 23	23,3	23,4	23,5	23,7	23,8
Equilibi	pressi	mmHg	140	141	142	143	14	145	146	147	148	149	150	151	152	<u>1</u> 2	2	155	156	157	158	159	160	161	162	<u>18</u>	164	165	166	167	168	169	170	17	172	173	174	175	176	11	178	179
Surface	area	S	255,7	254,6	253,5	252,4	251,3	250,2	249,1	248,0	247,0	245,9	244,8	243,7	241,7	241,6	240,5	239,5	238,4	237,3	236,3	235,2	234,2	233,1	232,1	231,0	230,0	229,0	527,9	226,9	225,9	224,9	223,8	222,8	221,8	220,8	219,8	218,8	217,8	216,8	215,8	214,8
Corre-	factor	F	0,006 99	0,007 08	0,007 17	0,007 26	0,007 35	0,007 44	0,007 53	0,007 62	0,007 71	0,007 81	0,007 90	0,007 99	0,008 09	0,008 18	0,008 28	0,008 37	0,008 47	0,008 56	0,008 66	0,008 76	0,008 86	0,008 96	90 600'0	0,009 16	0,009 26	0,009 36	0,009.46	0,009 56	0,009 66	0,009 77	0,009 87	0,009 97	0,010 08	0,010 19	0,010 29	0,010 40	0,010 51	0,010 61	0,010 72	0,010 83
rium	ure	ķРа	13,3	13,4	13,5	13,7	13,8	13,9	14,1	14,2	14,3	14,5	14,6	14,7	14,9	15,0	15,1	15,3	15,4	15,5	15,7	15,8	15,9	16,1	16,2	16,3	16,5	16,6	16,7	16,9	17,0	17,1	17,3	17,4	17,5	17,7	17,8	17,9	18,1	18,2	18,3	18,5
Equilib	press	mmHg	100	101	102	133	5	105	106	107	8	108	110	111	112	113	114	115	116	117	118	119	120	121	12	123	124	125	126	127	128	129	130	131	132	133		135	136	137	138	139
					_					-									_				_												_		_					

ISO 4652-1981 (E)