Standard Fest Method (Analytical Procedure)-Practice for (Analytical Procedure) Tests of Anisotropic Unconfined Aquifers by Neuman Method ${ }^{1}$

Abstract

This standard is issued under the fixed designation D5920;D5920/D5920M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Seope*

1.1 This test method covers an analytieal procedure for determining the transmissivity, storage coefficient, speeifie yield, and horizontal-to-vertieal hydraulic conductivity ratio of an uneonfined aquifer. It is used to analyze the drawdown of water levels in piezometers and partially or fully penetrating observation wells during pumping from a control well at a constant rate.
1.2 The analytieal proeedure given in this test method is used in conjunetion with Guide D4043 and Test Method D4050.
1.3 The valid use of the Neuman method is limited to determination of transmissivities for aquifers in hydrogeologie settings with reasonable correspondenee to the assumptions of the theory.
1.4 The valtes stated in SI units are to be regarded as standard.
1.5 This standard does not purrport to address all of the safety concerns, if any, associated with its use. It is the respomsibility of the user of this standard to establish appropriate safety and health practices and determint the applicability of regulatory limitations prior to use.

2. Refereneed Documents

2.1 ASTM Stathtards:2

D653 Terminology Relating to Soil, Roek, and Contained Fluids
Đ3740 Practice for Minimum Requirements for Ageneies Engaged in Testing and/or Inspection of Soil and Roek as Used in Engineering Design and Construetion
D4043 Guide for Selection of Aquifer Test Method in Determining Hydraulic Properties by Well Teehniques
D4050 Test Method for (Field Proeedure) for Withdrawal and Injeetion-Well Testing for Determining Hydratlie Properties of Aquifer Systems
D4105 Praetiee for (Analytieal Proeedure) for Determining Transmissivity and Storage Coeffieient of Nonleaky Confined Aquifers by the Modified Theis Nonequilibritm Method
D4106 Practice for (Analytical Procedure) for Determining Transmissivity and Storage Coefficient of Nonleaky Confined Aquifers by the Theis Nonequilibrium Method
B6026 Praetiee for Using Signiffeant Digits in Geoteehnieal Data

3. Terminology

3.1 Defintitions = For definitions of general teehnieal terms used within this guide, refer to Terminology D653.
3.2 Symbols and Dimensions:
$3.2 .1 \mathrm{~b}[L]$-initial saturated thiekness of the aquifer.
$3.2 .2 d[L]$-vertieal distance between top of sereen in pumping well and initial position of the water table.
3.2.3 $d_{D}[\mathrm{nd}]=\mathrm{dim}$ ensionless d, equal to d / b.
3.2.4 $J_{0}(x)$-zero-order Bessel function of the first kind.
3.2.5 $K_{r}\left[L T^{-1}\right]$-hydratlie conductivity in the plane of the aquifer, radially from the eontrol well.

[^0]*A Summary of Changes section appears at the end of this standard
3.2.6 $K_{Z}\left[L T^{-1}\right]$ hydratlie eondtretivity nommal to the plane of the aquifer.

3.2.6.1 Discussion-

The use of the symbol K for the hydratlic conductivity is the predominant usage in groundwater literature by hydrogeologists, whereas, the symbol k is commonly used for this term in soil and roek meehanies and soil seience.
$3.2 .7 \mathrm{l}[\mathrm{L}]$-vertieal distanee between bettom of sereen in control well and initial position of water table.
$3.2 .8 l_{D}[n d]=$ dimensionless l, equal to l / b.
3.2.9 $Q\left[L^{3} T^{-1}\right]$-diseharge rate.
3.2.10 $\mathrm{r}[L]$-radial distance from control well.
$3.2 .11 \mathrm{~s}[L]$-drawdown.
3.2.12 $s_{c}[L]=$ eorreeted drawdown.
3.2.13 $s_{D}[\mathrm{nd}]$-dimensionless drawdown, equal to $4 \pi \mathrm{fr} / \mathrm{Q}$.
3.2.14 $s_{w t}[L]=$ drawdown of the water table.
3.2.15 $\mathrm{S}[\mathrm{nd}]$-storage coefficient, equal to $S_{s} b$.
3.2.16 $S_{s}\left[L^{-1}\right]$-speeifie storage.
3.2.17 $S_{y}[\mathrm{nd}]$-speeific yield.
3.2.18 $t[T]$-time since pumping started.
3.2.19 $t_{r}[T]$-time since recovery started.
3.2.20 $t_{s}[n d]$-dimensionless time with respect to S_{s}, equal to $T t / S r^{2}$.
3.2.21 $t_{y}[n d]$-dimensionless time with respeet to S_{y}, equal to $T t / S_{y} r^{2}$.
$3.2 .22 t_{\beta}[T]$-time, t, eorresponding to intersection of a horizontal line through the intermediate data with an inelined line through late data on semilogarithmic paper.
3.2.23 $t_{y \beta}[n d]$-dimensionless time, t_{y}, corresponding to the intersection of a horizontal line through intermediate data with an inelined line through late data in Fig. 1.
$3.2 .24\left(t / r^{2}\right)_{e}[T]-t / r^{2}$ corresponding to the intersection of a straight line through the early data with $s=0$ on semilogarithmie paper $\left[T L^{-2}\right]$.
$3.2 .25\left(t / r^{2}\right)_{1}[T]-t / r^{2}$ corresponding to the intersection of a straight line through the late data with $s=0$ on semilogarithmie paper.

TIME DIVIDED BY RADIUS SQUARED, IN SECONDS PER METER SQUARED
FIG. 1 Aquifer-Test Analysis, Example Two
3.2.26 $T\left[L^{2} T^{-1}\right]$-transmissivity, $K_{r} b$.
3.2.27 $z[L]$-vertieal distance above the bottom of the aquifer.
$3.2 .28 z_{1}[L]$-vertieal distanee of the bettom of the observation well sereen above the bettom of the aquifer.
$3.2 .29-z_{2}[L]$-vertieal distance of the top of the observation well sereen above the bottom of the aquifer.
$3.2 .30 \bar{z}_{D}$ [nd$]$]-dimensionless elevation, equal to z / b.
3.2.31 $z_{1 D}[n d]$-dimensionless elevation of base of sereen, equal to z_{1} / b.
3.2.32 $z_{2 D}[n d]$-dimensionless elevation of top of sereen, equal to z_{2} / b.
3.2.33 a-degree of anisotropy, equal to $K_{z} / K_{r^{\prime}}$
3.2.34 $\beta[n d]$-dimensionless parameter $\alpha r^{r^{2}} / b^{2}$.
3.2.35 $\mathrm{As}_{e}[L]$ - the differenee in drawdown over one log eyele of time along a straight line through early data on semilogarithmic paper.
3.2.36 $\Delta s_{l}[\mathrm{~L}]$ — the difference in drawdown over one log eyele of time along a straight line through late data on semilogarithmie paper.
3.2.37 $\sigma[n d]$-dimensionless parameter S / S_{y}.

4. Stmmary of Test Method

4.1 Procedture=This test method deseribes a proeedtre for analyzing data colleeted during a withdrawal well test. This test method should have been selected using Guide D4043 on the basis of the hydrologic eharacteristies of the site. The field test (Test Method D4050) requires pumping a control well that is open to all or part of an theonfined aquifer at a constant rate for a speeiffed period and observing the drawdown in piezometers or observation wells that either partly or fthly penetrate the aquifer. This test method may also be used to analyze an injection test with the appropriate change in sign. The rate of drawdown of water levels in the aquifer is a function of the loeation and depths of sereened open intervals of the control well, observation wells, and piezometers. The drawdown may be analyzed to determine the transmissivity, storage coeffieient, specific yield, and ratio of vertieal to horizontal hydraulic conductivity of the aquifer. The aeeuracy with which any property ean be determined depends on the loeation and length of the well sereen in observation wells and piezometers. Two methods of analysis, a type eurve method and a semilogarithmie method, are deseribed.
4.2 Solution-The solution given by Neuman $(1)^{3}$ ean be expressed as:

$$
\begin{equation*}
s(r, z, t)=\frac{Q}{4 \pi T} \int_{0}^{\infty} 4 y J_{0}\left(y \beta^{1 / 2}\right)\left[u_{0}(y)+\sum_{n=1}^{\infty} u_{n}(y)\right] d y \tag{1}
\end{equation*}
$$

where, for piezometers, Neuman's (1) Eqs 27 and 28 are as follows:

$$
\begin{equation*}
u_{0}(y)=\frac{\left\{1-\exp \left\{-t_{s} \beta\left(y^{2}-\gamma_{0}^{2}\right)\right]\right\} \cosh \left(\gamma_{0} z_{D}\right)}{\left\{y^{2}+(1+\sigma) \gamma_{0}^{2}\left(y^{2}-\gamma_{0}^{2}\right)^{2} \sigma\right\}^{2} \cosh \left(\gamma_{0}\right)} \tag{2}
\end{equation*}
$$

$$
\frac{\sinh \left[\gamma_{0}\left(1-d_{D}\right)\right]-\sinh \left[\gamma_{0}\left(1-l_{D}\right)\right]}{\left(l_{D} d_{D}\right) \sinh \left(\gamma_{0}\right)}
$$

and:

$$
\begin{equation*}
u_{n}(y)=\frac{\left\{1-\exp \left[-t_{s} \beta\left(y^{2}+\gamma_{n}^{2}\right)\right]\right] \cos \left(\gamma_{n} z_{D}\right)}{\left\{y^{2}-(1+\sigma) \gamma_{n}^{2}-\left(y^{2}+\gamma_{n}^{2}\right)^{2} / \sigma\right\} \gamma_{n}} \tag{3}
\end{equation*}
$$

$$
\frac{\sin \left[\gamma_{n}\left(1-d_{D}\right)\right]-\sin \left[\gamma_{n}\left(1-l_{D}\right)\right]}{\left(l_{D}-d_{D}\right) \sin \left(\gamma_{n}\right)}
$$

and the terms γ_{0} and γ_{n} are the roots of the following equations:

$$
\begin{equation*}
\sigma \gamma_{0} \sinh \left(\gamma_{0}\right)-\left(y^{2}-\gamma_{0}^{2}\right) \cosh \left(\gamma_{0}\right)=0 \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\gamma_{0}^{2}<y^{2} \tag{5}
\end{equation*}
$$

$-\sigma \gamma_{n} \sin \left(\gamma_{n}\right)+\left(y^{2}+\gamma_{n}^{2}\right) \cos \left(\gamma_{n}\right)=0$

$$
(2 n-1)(\pi / 2)<\gamma_{n}<n \pi n \geq 1
$$

4.2.1 The drawdown in an observation well is the average over the sereened interval, of which $u_{0}(y)$ and $u_{n}(y)$ are deseribed by Neuman's (1) Eqs 29 and 30:

[^1]\[

$$
\begin{align*}
& u_{0}(y)=\frac{\left\{1-\exp \left[-t_{s} \beta\left(y^{2}-\gamma_{0}^{2}\right)\right]\right\}\left[\sinh \left(\gamma_{0} z_{2 D}\right)-\sinh \left(\gamma_{0} z_{1 D}\right)\right]}{\left\{\sinh \left[\gamma_{0}\left(1-d_{D}\right)\right]-\sinh \left[\gamma_{0}\left(1-l_{D}\right)\right]\right\}} \begin{array}{c}
\left\{y^{2}+(1+\sigma) \gamma_{0}^{2}-\left(y^{2}-\gamma_{0}^{2}\right)^{2} / \sigma\right\} \cosh \left(\gamma_{0}\right) . \\
\left(z_{2 D}-z_{D D}\right) \gamma_{0}\left(l_{D}-d_{D}\right) \sinh \left(\gamma_{0}\right)
\end{array} \\
& u_{n}(y)=\frac{\left\{1-\exp \left[-t_{s} \beta\left(y^{2}+\gamma_{n}^{2}\right)\right]\right\}\left[\sin \left(\gamma_{n} z_{2 D}\right)-\sin \left(\gamma_{n} z_{1 D}\right)\right]}{\left\{\sin \left[\gamma_{n}\left(1-d_{D}\right)\right]-\sin \left[\gamma_{n}\left(1-l_{D}\right)\right]\right\}} \begin{array}{c}
\left\{y^{2}-(1+\sigma) \gamma_{n}^{2}-\left(y^{2}+\gamma_{n}^{2}\right)^{2} / \sigma\right\} \cos \left(\gamma_{n}\right) . \\
\left(z_{2 D}-z_{1 D}\right) \gamma_{n}\left(l_{D}-d_{D}\right) \sin \left(\gamma_{n}\right)
\end{array} \tag{6}
\end{align*}
$$
\]

4.2.2 In the ease in whieh the control well and observation well fully penetrate the aquifer, the equations redtree to Neuman's (1) Eqs 2 and 3 as follows:

$$
\begin{equation*}
u_{0}(y)=\frac{\left\{1-\exp \left[-t_{s} \beta\left(y^{2}-\gamma_{0}^{2}\right)\right]\right] \tanh \left(\gamma_{0}\right)}{\left\{y^{2}+(1+\sigma) \gamma_{0}^{2}\left[\left(y^{2} \quad \gamma_{0}^{2}\right)^{2} / \sigma\right]\right\} \gamma_{0}} \tag{8}
\end{equation*}
$$

and:

$$
\begin{equation*}
u_{n}(y)=\frac{\left\{1-\exp \left[-t_{s} \beta\left(y^{2}+\gamma_{n}^{2}\right)\right] \tan \left(\gamma_{n}\right)\right.}{\left\{y^{2}-(1+\sigma) \gamma_{n}^{2}-\left(y^{2}+\gamma_{n}^{2}\right)^{2} / \sigma\right)_{1} y_{n}} \tag{9}
\end{equation*}
$$

5. Signifieanee and Use

5.1 Assumptions:

5.1.1 The control well diseharges at a constant rate, Q.
5.1.2 The control well, observation wells, and piezometers are of infinitesimal diameter.
5.1.3 The uneonfined aquifer is homogeneous and really extensive.
5.1.4 Diseharge from the control well is derived initially from elastie storage in the aquifer, and later from gravity drainage from the water table.
5.1.5 The geometry of the aquifer, control well, observation wells, and piezometers is shown in Fig. 2. The geometry of the test wells should be adjusted depending on the parameters of interest.
5.2 Implications of Assumptions:
5.2.1 Use of the Netman (1) method assumes the control well is of infinitesimal diameter. The storage in the control well may adversely affeet drawdown meastrements obtained in the early part of the test. See 5.2.2 of Test Method D4106 for assistanee in determining the duration of the effeets of well-bore storage on drawdown.
5.2.2 If drawdown is large compared with the initial saturated thiekness of the aquifer, the late-time drawdown may need to be adjusted for the effeet of the reduction in saturated thiekness. Seetion 5.2 .3 of Test Method D 4106 provides guidance in correeting for the reduetion in saturated thickness. Aceording to Neuman (1) sueh adjustments should be made only for late-time values.

5.3 Practice D3740 provides evaluation factors for the aetivities in this guide.

Nome 1-The quality of the result produeed by this guide is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Ageneies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/imspection/ete. Users of this gutide are cattioned that complianee with Practiee D3740 does net in itself enstur reliable restlts. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of these factors.

FIG. 2 Cross Section Through a Discharging Well Screened in Part of an Unconfined Aquifer

6. Apparatus

6.1 Analysis-Analysis of data from the field procedure (see Test Method D4050) by this test method requires that the control well and observation wells meet the requirements speeified in the following subsections.
6.2 Construction of Control Well-Install the control well in the aquifer, and equip with a pump eapable of diseharging water from the well at a constant rate for the duration of the test.
6.3 Construction of Observation Wells-Construct one or more observation wells or piezometers at a distanee from the control well. For this test method, observation wells may be open through all or part of the thickness of the aquifer.
6.4 Location of Observation Wells- Wells may be loeated at any distanee from the control well within the area of influenee of pumping.

7. Procedure

7.1 Procedture-The proeedure consists of condurting the field procedtre for withdrawal well tests (see Test Method D4050), and analyzing the field data as addressed in this test method.
7.2 Analysis-Analyze the field test data by plotting the data and reeording parameters as speeified in Seetion 8.

8. Caleulation and Interpretation of Results

8.1 Methods-The drawdown data collected during the aquifer test may be analyzed by either the type-etrive method or the semilogarithmie method. Any consistent set of units may be used.
8.1.1 Refer to Practice D6026 on the use of signifieant digits in the ealeulations.

Neme 2-The procedures used to specify how data are collected/recorded and ealeulated in this guide are regarded as the industry standard. In addition, they are representative of the signiffeant digits that should generally be retained. The proeedures used do not consider material variation, purpose for ebtaining the data, special purpose studies, or any considerations for the user's objectives; and it is common practiee to inerease or reduee signiffeant digits of reported data to commenstrate with these considerations. It is beyond the seope of this guide to consider signifieant digits used in analysis methods for engineering design.
8.1.2 Type-Curve Method-Plot drawdown, s, on the vertieal axis and time divided by the square of the radius to the well or piezometer, t / r^{2}, on the horizontal axis using log-log paper. Group data for all wells or piezometers that have sereened intervats the same elevation above the base of the aquifer, z_{D} (for piezometers), or $z_{1 D}$ and $z_{2 D}$ (for observation wells).
8.1.2.1 Prepare a family of type eurves for different values of β. For tests in which both the control well and the observation wells fully penetrate the aquifer, the values in Table 1 and Table 2 may be used to prepare the type eurves, as shown in Fig. 3. For piezometers, or tests in which the eontrol well or observation wells do not effectively penetrate the full thiekness of the aquifer, the values of s_{D} corresponding to values of t_{s} and t_{y} for a range of values of β must be computed using computer programs such as these of Dawson and Istok (2), or Moeneh (3). The program requires that values for the dimensionless parameters l_{D} and d_{D} be supplied for the control well, and values of z_{D} be supplied for the piezometers, or that the values of $z_{1 D}$ and $z_{2 D}$ be supplied for observation wells. Only drawdowns for which these dimensionless parameters are similar may be analyzed using the same family of type curves. Prepare as many data plots and families of type curves as neeessary to analyze the test.
8.1.2.2 Holding the axes parallel, overlay the data plot on the type eurves. Mateh as many of the early time-drawdown data as possible to the left-most part of the type eurve (Type Aetrrves). Select an early-time mateh point, and reeord the values of $s, t / r^{2}$, s_{D} and t_{s}. Moving the data plot horizontally, mateh as many as possible of the late-time data to the right-most part of the type eurves (Type B eurves) and seleet a late-time mateh point. Reeord the values of $s, s_{D}, t / r^{2}$, and t_{y} for this mateh point. The values of s and s_{D} should be the same for each mateh point, that is, the data eurves should be shifted only horizontally, not vertieally, on the type curve, and the values of β for each observation well should be the same for early and late times.
8.1.2.3 Repeat the procedure in 8.1.2.2 for all additional data plots and type eurves. The values of s and s_{D} should be the same for all plots in a single test. If neeessary, repeat the analysis for each plot until a consistent set of valtes is obtained between all plots. Caleulate the value of the term β / r^{2} for every observation well or piezometer. Beeause the remaining terms in the definition of $\beta, \alpha / b^{2}$, should be nearly constant over the area of the test, the term β / r^{2} should be independent of radits. If not, a new set of mateh points should be obtained, and β / r^{2} computed for each well until the values are independent of radits.
8.1.2.4 Caleulate the transmissivity, speeific yield, storage eoeffieient, and horizontal hydraulic eondutivity frem the values of $s, s_{D}, t / r^{2}, t_{s}$ and t_{y} :

$$
\begin{gather*}
T=Q s_{D} / 4 \pi s \tag{10}\\
S_{y}=\left(T / t_{y}\right)\left(t / t r^{2}\right) \tag{11}\\
S=\left(T / t_{s}\right)\left(t / r^{2}\right) \tag{12}\\
K_{r}=T / b \tag{13}
\end{gather*}
$$

The anisotropy ean be caleulated from:

TABLE 1 Values of S_{D} for the Construction of Type A Curves for Fully Penetrating Wells (1) ${ }^{A}$

t_{a}	$\beta=0.001$	$\beta=0.004$	$\beta=0.01$	$\beta=0.03$	$\beta=0.06$	$\beta=0.1$	$\beta=0.2$	$\beta=0.4$	$\beta=0.6$
1×10^{-1}	2.48×10^{-2}	2.43×10^{-2}	2.41×10^{-2}	2.35×10^{-2}	2.30×10^{-2}	2.24×10^{-2}	2.14×10^{-2}	1.99×10^{-2}	1.88×10^{-2}
2×10^{-1}	1.45×10^{-1}	1.42×10^{-1}	1.40×10^{-1}	1.36×10^{-1}	1.31×10^{-1}	1.27×10^{-1}	1.19×10^{-1}	1.08×10^{-1}	9.88×10^{-2}
3.5×10^{-1}	3.58×10^{-1}	3.52×10^{-1}	3.45×10^{-1}	3.31×10^{-1}	3.18×10^{-1}	3.04×10^{-1}	2.79×10^{-1}	2.44×10^{-1}	2.17×10^{-1}
6×10^{-1}	6.62×10^{-1}	6.48×10^{-1}	6.33×10^{-1}	6.01×10^{-1}	5.70×10^{-1}	5.40×10^{-1}	4.83×10^{-1}	4.03×10^{-1}	3.43×10^{-1}
$1 \times 10^{\circ}$	1.02×10^{0}	9.92×10^{-1}	9.63×10^{-1}	9.05×10^{-1}	8.49×10^{-1}	7.92×10^{-1}	6.88×10^{-1}	5.42×10^{-1}	4.38×10^{-1}
2×10^{0}	1.57×10^{0}	1.52×10^{0}	1.46×10^{0}	1.35×10^{0}	1.23×10^{0}	1.12×10^{0}	9.18×10^{-1}	6.59×10^{-1}	4.97×10^{-1}
3.5×10^{0}	2.05×10^{0}	1.97×10^{0}	1.88×10^{0}	1.70×10^{0}	1.51×10^{0}	1.34×10^{0}	1.03×10^{0}	6.90×10^{-1}	5.07×10^{-1}
6×10^{0}	2.52×10^{0}	2.41×10^{0}	2.27×10^{0}	1.99×10^{0}	1.73×10^{0}	1.47×10^{0}	1.07×10^{0}	6.96×10^{-1}	...
1×10^{1}	2.97×10^{0}	2.80×10^{0}	2.61×10^{0}	2.22×10^{0}	1.85×10^{0}	1.53×10^{0}	1.08×10^{0}	...	\ldots
2×10^{1}	3.56×10^{0}	3.30×10^{0}	3.00×10^{0}	2.41×10^{0}	1.92×10^{0}	1.55×10^{0}	...	\ldots	\ldots
3.5×10^{1}	4.01×10^{0}	3.65×10^{0}	3.23×10^{0}	2.48×10^{0}	1.93×10^{0}	...	\ldots	...	\ldots
6×10^{1}	4.42×10^{0}	3.93×10^{0}	3.37×10^{0}	2.49×10^{0}	1.94×10^{0}	\ldots
1×10^{2}	4.77×10^{0}	4.12×10^{0}	3.43×10^{0}	2.50×10^{0}
2×10^{2}	5.16×10^{0}	4.26×10^{0}	3.45×10^{0}
3.5×10^{2}	5.40×10^{0}	4.29×10^{0}	3.46×10^{0}	\ldots	\ldots	\ldots
6×10^{2}	5.54×10^{0}	4.30×10^{0}	\ldots
1×10^{3}	5.59×10^{0}
2×10^{3}	5.62×10^{0}
3.5×10^{3}	5.62×10^{0}	4.30×10^{0}	3.46×10^{0}	2.50×10^{0}	1.94×10^{0}	1.55×10^{0}	1.08×10^{0}	6.96×10^{-1}	5.07×10^{-1}
$\beta=0.8$	$\beta=1.0$	$\beta=1.5$	$\beta=2.0$	$\beta=2.5$	$\beta=3.0$	$\beta=4.0$	$\beta=5.0$	$\beta=6.0$	$\beta=7.0$
1.79×10^{-2}	1.70×10^{-2}	1.53×10^{-2}	1.38×10^{-2}	1.25×10^{-2}	1.13×10^{-2}	9.33×10^{-3}	7.72×10^{-3}	6.39×10^{-3}	5.30×10^{-3}
9.15×10^{-2}	8.49×10^{-2}	7.13×10^{-2}	6.03×10^{-2}	5.11×10^{-2}	4.35×10^{-2}	3.17×10^{-2}	2.34×10^{-2}	1.74×10^{-2}	1.31×10^{-3}
1.94×10^{-1}	1.75×10^{-1}	1.36×10^{-1}	1.07×10^{-1}	8.46×10^{-2}	6.78×10^{-2}	4.45×10^{-2}	3.02×10^{-2}	2.10×10^{-2}	1.51×10^{-2}
2.96×10^{-1}	2.56×10^{-1}	1.82×10^{-1}	1.33×10^{-1}	1.01×10^{-1}	7.67×10^{-2}	4.76×10^{-2}	3.13×10^{-2}	2.14×10^{-2}	1.52×10^{-2}
3.60×10^{-1}	3.00×10^{-1}	1.99×10^{-1}	1.40×10^{-1}	1.03×10^{-1}	7.79×10^{-2}	4.78×10^{-2}	...	2.15×10^{-2}	...
3.91×10^{-1}	3.17×10^{-1}	2.03×10^{-1}	1.41×10^{-1}
3.94×10^{-1}	\ldots
...	\ldots	...	\ldots	\ldots	\ldots	\cdots	\ldots
...	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
\ldots	\ldots	\ldots	\ldots	\ldots	...
...
\ldots	...	\ldots	\ldots	\ldots	\ldots
\ldots	\ldots	\ldots	\ldots	...	\ldots
\ldots	\ldots	\ldots	\ldots	\ldots
\ldots	...	\ldots	...	\ldots	\ldots	\ldots	...	\ldots	\ldots
\ldots	...	\ldots	\ldots
\ldots	\ldots	\ldots	\cdots	\ldots	...	\ldots	\ldots
...	...	\ldots
	3.17×10^{-1}	2.03×10^{-1}	1.41×10^{-1}	${ }^{\ldots} .03 \times 10^{-1}$	7.79×10^{-2}	4.78×10^{-2}	$\stackrel{\cdots}{\cdots} \times 10^{-2}$	$\stackrel{\cdots}{\cdots} \times 10^{-2}$	$\stackrel{\cdots}{\cdots} \times 10^{-2}$
3.94×10^{-1}	3.17×10^{-1}	2.03×10^{-1}	1.41×10^{-1}	1.03×10^{-1}	7.79×10^{-2}	4.78×10^{-2}	3.13×10^{-2}	2.15×10^{-2}	1.52×10^{-2}

${ }^{A}$ Values were obtained from (2) by settingo $=10^{-2}$.
and the vertieal permeability from:
8.1.2.5 The results of a hypothetical aquifer test are shown in Fig. 4. A control well is diseharged at a rate of $0.21 \mathrm{~m}^{3} \mathrm{~s}^{-1}$, and water levels are measured in OW1 at a radius of 9 m from the control well, in OW2 ($r=50 \mathrm{~m}$), and OW3 ($r=185 \mathrm{~m}$). A log-log plot of drawdown versus time divided by radits to the control well, squared, is shown for the three observation wells, superimposed on type etrives derived from the data in Table 1 and Table 2. Meastrements from each observation well fall on a different β eurve.
8.1.2.6 For the example, the transmissivity from Eq 10 is:
$T=Q s_{d} / 4 \pi s=\left(0.21 \mathrm{~m}^{3} s^{-1} \times 1.0\right) /(4 \times 3.14 \times 6.5 \mathrm{~m})$

$$
=2.57 \times 10^{-3} \mathrm{~m}^{2} s^{-1},
$$

and the speeific yield from Eq 11 is:

$$
S_{y}=\left(T / t_{y}\right)\left(t / r^{2}\right)=\left(2.57 \times 10^{-3} \mathrm{~m}^{2} \mathrm{~s}^{-1} / 1.0\right)\left(88 \mathrm{~m}^{-2} \mathrm{~s}\right)=0.23
$$

The storage coefficient, from Eq 11 is:
$S=\left(T / t_{s}\right)\left(t / r^{2}\right)=\left(2.57 \times 10^{-3} \mathrm{~m}^{2} \mathrm{~s}^{-1} / 1.0\right)\left(0.145 \mathrm{~m}^{-2} \mathrm{~s}\right)$

$$
=3.7 \times 10^{-4}
$$

The ratio of vertieal to horizontal hydraulic condtretivity ean be ealeulated from Eq 14 using an assumed aquifer thiekness, b of 25 m , and data from OW1 as follows:

$$
\alpha=\left(\beta / r^{2}\right) b^{2}=\left(0.004 / 81 \mathrm{~m}^{2}\right)\left(625 \mathrm{~m}^{2}\right)=0.03
$$

8.1.3 Semilogarithmic Method-This procedure is applieable to tests in whieh the control and observation wells effeetively fully penetrate the aquifer. Plot drawdown on the vertieal (arithmetie) axis and time divided by the square of the radius to the control well on the horizontal (logarithmie) axis for all observation wells. The early and late date will tend to fall on parallel straight lines. The intermediate valtees will fall on horizontal lines between these two extremes.

TABLE 2 Values of S_{D} for the Construction of Type B Curves for Fully Penetrating Wells (1) ${ }^{A}$

t_{y}	$\beta=0.001$	$\beta=0.004$	$\beta=0.01$	$\beta=0.03$	$\beta=0.06$	$\beta=0.1$	$\beta=0.2$	$\beta=0.4$	$\beta=0.6$
1×10^{-4}	5.62×10^{0}	4.30×10^{0}	3.46×10^{0}	$2.50 \times 10^{\circ}$	1.94×10^{0}	1.56×10^{0}	1.09×10^{0}	6.97×10^{-1}	5.08×10^{-1}
2×10^{-4}
3.5×10^{-4}		
6×10^{-4}		
1×10^{-3}					...			6.97×10^{-1}	5.08×10^{-1}
2×10^{-3}	6.97×10^{-1}	5.09×10^{-1}
3.5×10^{-3}								6.98×10^{-1}	5.10×10^{-1}
6×10^{-3}	...	\ldots	\ldots	\ldots	\ldots	7.00×10^{-1}	5.12×10^{-1}
1×10^{-2}				7.03×10^{-1}	5.16×10^{-1}
2×10^{-2}			1.56×10^{0}	1.09×10^{0}	7.10×10^{-1}	5.24×10^{-1}
3.5×10^{-2}					1.94×10^{0}	1.56×10^{0}	1.10×10^{0}	7.20×10^{-1}	5.37×10^{-1}
6×10^{-2}	2.50×10^{0}	1.95×10^{0}	1.57×10^{0}	1.11×10^{0}	7.37×10^{-1}	5.57×10^{-1}
1×10^{-1}				2.51×10^{0}	1.96×10^{0}	1.58×10^{0}	1.13×10^{0}	7.63×10^{-1}	5.89×10^{-1}
2×10^{-1}	5.62×10^{0}	4.30×10^{0}	3.46×10^{0}	2.52×10^{0}	1.98×10^{0}	1.61×10^{0}	1.18×10^{0}	8.29×10^{-1}	6.67×10^{-1}
3.5×10^{-1}	5.63×10^{0}	4.31×10^{0}	3.47×10^{0}	2.54×10^{0}	2.01×10^{0}	1.66×10^{0}	1.24×10^{0}	9.22×10^{-1}	7.80×10^{-1}
6×10^{-1}	5.63×10^{0}	4.31×10^{0}	3.49×10^{0}	2.57×10^{0}	2.06×10^{0}	1.73×10^{0}	1.35×10^{0}	1.07×10^{0}	9.54×10^{-1}
1×10^{0}	5.63×10^{0}	4.32×10^{0}	3.51×10^{0}	2.62×10^{0}	2.13×10^{0}	1.83×10^{0}	1.50×10^{0}	1.29×10^{0}	1.20×10^{0}
2×10^{0}	5.64×10^{0}	4.35×10^{0}	3.56×10^{0}	2.73×10^{0}	2.31×10^{0}	2.07×10^{0}	1.85×10^{0}	1.72×10^{0}	1.68×10^{0}
3.5×10^{0}	5.65×10^{0}	4.38×10^{0}	3.63×10^{0}	2.88×10^{0}	2.55×10^{0}	2.37×10^{0}	2.23×10^{0}	2.17×10^{0}	2.15×10^{0}
6×10^{0}	5.67×10^{0}	4.44×10^{0}	3.74×10^{0}	3.11×10^{0}	2.86×10^{0}	2.75×10^{0}	2.68×10^{0}	2.66×10^{0}	2.65×10^{0}
1×10^{1}	5.70×10^{0}	4.52×10^{0}	3.90×10^{0}	3.40×10^{0}	3.24×10^{0}	3.18×10^{0}	3.15×10^{0}	3.14×10^{0}	3.14×10^{0}
2×10^{1}	5.76×10^{0}	4.71×10^{0}	4.22×10^{0}	3.92×10^{0}	3.85×10^{0}	3.83×10^{0}	3.82×10^{0}	3.82×10^{0}	3.82×10^{0}
3.5×10^{1}	5.85×10^{0}	4.94×10^{0}	4.58×10^{0}	4.40×10^{0}	4.38×10^{0}	4.38×10^{0}	4.37×10^{0}	4.37×10^{0}	4.37×10^{0}
6×10^{1}	5.99×10^{0}	5.23×10^{0}	5.00×10^{0}	4.92×10^{0}	4.91×10^{0}				
1×10^{2}	6.16×10^{0}	5.59×10^{0}	5.46×10^{0}	5.42×10^{0}	5.42×10^{0}	$5.42 \times 10^{\circ}$	$5.42 \times 10^{\circ}$	$5.42 \times 10^{\circ}$	$5.42 \times 10^{\circ}$
$\beta=0.8$	$\beta=1.0$	$\beta=1.5$	$\beta=2.0$	$\beta=2.5$	$\beta=3.0$	$\beta=4.0$	$\beta=5.0$	$\beta=6.0$	$\beta=7.0$
3.95×10^{-1}	3.18×10^{-1}	2.04×10^{-1}	1.42×10^{-1}	1.03×10^{-1}	7.80×10^{-2}	4.79×10^{-2}	3.14×10^{-2}	2.15×10^{-2}	1.53×10^{-2}
...		7.81×10^{-2}	4.80×10^{-2}	3.15×10^{-2}	2.16×10^{-2}	1.53×10^{-2}
...	1.03×10^{-1}	7.83×10^{-2}	4.81×10^{-2}	3.16×10^{-2}	2.17×10^{-2}	1.54×10^{-2}
				1.04×10^{-1}	7.85×10^{-2}	4.84×10^{-2}	3.18×10^{-2}	2.19×10^{-2}	1.56×10^{-2}
3.95×10^{-1}	3.18×10^{-1}	2.04×10^{-1}	1.42×10^{-1}	1.04×10^{-1}	7.89×10^{-2}	4.78×10^{-2}	3.21×10^{-2}	2.21×10^{-2}	1.58×10^{-2}
3.96×10^{-1}	3.19×10^{-1}	2.05×10^{-1}	1.43×10^{-1}	1.05×10^{-1}	7.99×10^{-2}	4.96×10^{-2}	3.29×10^{-2}	2.28×10^{-2}	1.64×10^{-2}
3.97×10^{-1}	3.21×10^{-1}	2.07×10^{-1}	1.45×10^{-1}	1.07×10^{-1}	8.14×10^{-2}	5.09×10^{-2}	3.41×10^{-2}	2.39×10^{-2}	1.73×10^{-2}
3.99×10^{-1}	3.23×10^{-1}	2.09×10^{-1}	1.47×10^{-1}	1.09×10^{-1}	8.38×10^{-2}	5.32×10^{-2}	3.61×10^{-2}	2.57×10^{-2}	1.89×10^{-2}
4.03×10^{-1}	3.27×10^{-1}	2.13×10^{-1}	1.52×10^{-1}	1.13×10^{-1}	8.79×10^{-2}	5.68×10^{-2}	3.93×10^{-2}	2.86×10^{-2}	2.15×10^{-2}
4.12×10^{-1}	3.37×10^{-1}	2.24×10^{-1}	1.62×10^{-1}	1.24×10^{-1}	9.80×10^{-2}	6.61×10^{-2}	4.78×10^{-2}	3.62×10^{-2}	2.84×10^{-2}
4.25×10^{-1}	3.50×10^{-1}	2.39×10^{-1}	1.78×10^{-1}	1.39×10^{-1}	1.13×10^{-1}	8.06×10^{-2}	6.12×10^{-2}	4.86×10^{-2}	3.98×10^{-2}
4.47×10^{-1}	3.74×10^{-1}	2.65×10^{-1}	2.05×10^{-1}	1.66×10^{-1}	1.40×10^{-1}	1.06×10^{-1}	8.53×10^{-2}	7.14×10^{-2}	6.14×10^{-2}
4.83×10^{-1}	4.12×10^{-1}	3.07×10^{-1}	2.48×10^{-1}	2.10×10^{-1}	1.84×10^{-1}	1.49×10^{-1}	1.28×10^{-1}	1.13×10^{-1}	1.02×10^{-1}
5.71×10^{-1}	5.06×10^{-1}	4.10×10^{-1}	3.57×10^{-1}	3.23×10^{-1}	2.98×10^{-1}	2.66×10^{-1}	2.45×10^{-1}	2.31×10^{-1}	2.20×10^{-1}
6.97×10^{-1}	6.42×10^{-1}	5.62×10^{-1}	5.17×10^{-1}	4.89×10^{-1}	4.70×10^{-1}	4.45×10^{-1}	4.30×10^{-1}	4.19×10^{-1}	4.11×10^{-1}
8.89×10^{-1}	8.50×10^{-1}	7.92×10^{-1}	7.63×10^{-1}	7.45×10^{-1}	7.33×10^{-1}	7.18×10^{-1}	7.09×10^{-1}	7.03×10^{-1}	6.99×10^{-1}
1.16×10^{0}	1.13×10^{0}	1.10×10^{0}	1.08×10^{0}	1.07×10^{0}	1.07×10^{0}	1.06×10^{0}	1.06×10^{0}	1.05×10^{0}	1.05×10^{0}
1.66×10^{0}	1.65×10^{0}	1.64×10^{0}	1.63×10^{0}						
2.15×10^{0}	2.14×10^{0}								
2.65×10^{0}	2.65×10^{0}	2.65×10^{0}	2.64×10^{0}						
3.14×10^{0}									
3.82×10^{0}									
4.37×10^{0}									
4.91×10^{0}									
5.42×10^{0}	$5.42 \times 10^{\circ}$	$5.42 \times 10^{\circ}$	5.42×10^{0}						

${ }^{A}$ Values were obtained from Ref (2) by setting $\sigma=10^{-2}$.
8.1.3.1 Fit a straight line to the late data. The intersection of this line with the horizontal axis $(s=0)$ is denoted by $\left(t / r^{2}\right)_{l}$. The slope of the line over one log eycle of t / r^{2} is denoted $\Delta s{ }_{l}$. The transmissivity and specifie yield of the aquifer are then ealeulated from Jaeob's (3) method, using the proeedures deseribed in Test Method D4105.
$T=2.30 \mathrm{Q} / 4 \pi \mathrm{As}{ }_{l}$

$$
\begin{equation*}
S_{3}=2.25 T\left(t / r^{2}\right)_{t} \tag{16}
\end{equation*}
$$

8.1.3.2 Fit a horizontal straight line to the intermediate data for each observation well. The intersection of the horizontal straight tine with the late-time straight line is denoted t_{β}. The dimensionless time $t_{y} \beta$ is then ealeulated from the following:

$$
t_{y \beta}=\left(T / S_{y}\right)\left(t_{\beta} / r^{2}\right)
$$

Using the values of $t_{y} \beta$, values of β for each observation well may be obtained by interpolation from Table 3 or be pieked from Fig. 5. The values of β should be independent of radius, as in 8.1.2.3.
8.1.3.3 Fit a straight line to the early part of the time-drawdown data. The interseetion of this line with the horizontal axis is denoted by $\left(t / r^{2}\right)_{e}$, and the slope of this line over one log eyele is Δs_{e}. The transmissivity and storage coeffieient are caleulated from:

[^0]: ${ }^{1}$ This practice is under the jurisdiction of ASTM Committee D18 on Soil and Rock and is the direct responsibility of Subcommittee D18.21 on Groundwater and Vadose Zone Investigations.

 Current edition approved Jtne 1, 2014May 15, 2020. Published July 2014May 2020. Originally approved in 1996. Last previous edition approved in 20062014 as D5920-96(2006)D5920, which was withdrawn Febrtary 2014 and reinsted in Jthe 2014. DOI: 10.1520/D5920-14.-14. DOI: 10.1520/D5920_D5920M-20.
 ${ }^{2}$ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@ astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.

[^1]: ${ }^{3}$ The boldface numbers in parentheses refer to a list of references at the end of the text.

