

Designation: D2855 - 15 D2855 - 20

An American National Standard

Standard Practice for the Two-Step (Primer and Solvent Cement) Method of Joining Poly (Vinyl Chloride) (PVC) or Chlorinated Poly (Vinyl Chloride) (CPVC) Pipe and Piping Components with Tapered Sockets¹

This standard is issued under the fixed designation D2855; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the U.S. Department of Defense.

1. Scope*

- 1.1 This practice describes a two-step (primer and solvent cement) method of joining poly(vinyl chloride) (PVC) or chlorinated poly(vinyl chloride) (CPVC) pipe and piping components with tapered sockets.
- Note 1—Simplified procedures may be allowed in non-pressure applications where local codes permit.
- Note 2—Where conflicts occur between the code and the manufacturer's installation instructions, the more restrictive provisions apply.
- 1.2 The products covered by this practice are intended for use with the distribution of pressured liquids only, which are chemically compatible with the piping materials. Due to inherent hazards associated with testing components and systems with compressed air or other compressed gases, some manufacturers do not allow pneumatic testing of their products. Consult with specific product/component manufacturers for their specific testing procedures prior to pneumatic testing.

https://standards.iteh.ai/catalog/standards/sist/c5390d3b-7719-487c-b3b0-d0912321b26a/astm-d2855-20

- Note 3—Pressurized (compressed) air or other compressed gases contain large amounts of stored energy which present serious safety hazards should a system fail for any reason.
- 1.3 This standard practice does not address the one-step method of joining pipe and piping components with tapered sockets with solvent cement without the use of primer. For the one-step method see Practice F3328.
- 1.4 The techniques covered are applicable to joining PVC to PVC or CPVC to CPVC pipe and piping components with tapered sockets. In the remainder of this standard practice, the term "piping components with tapered sockets", whether it be bell end pipe, spigot connections, or any other type of tapered connections, will be referred to as "fittings."
- 1.5 A partial list of standards for PVC and CPVC pipe, piping components, and solvent cements suitable for use in joining pipe and fittings is given in Appendix X1.
- 1.6 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.

¹ This practice is under the jurisdiction of ASTM Committee F17 on Plastic Piping Systems and is the direct responsibility of Subcommittee F17.20 on Joining. Current edition approved Nov. 1, 2015 Aug. 1, 2020. Published January 2016 August 2020. Originally approved in 1970. Last previous edition approved in 2019 as D2855 – 96D2855 – 15.(2010). DOI: 10.1520/D2855-15.10.1520/D2855-20.

- 1.7 The text of this practice references notes and footnotes that provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the practice.
- 1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety safety, health, and health environmental practices and determine the applicability of regulatory limitations prior to use.
- 1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:²

D1600 Terminology for Abbreviated Terms Relating to Plastics

D1784 Classification System and Basis for Specification for Rigid Poly(Vinyl Chloride) (PVC) Compounds and Chlorinated Poly(Vinyl Chloride) (CPVC) Compounds

D1785 Specification for Poly(Vinyl Chloride) (PVC) Plastic Pipe, Schedules 40, 80, and 120

D2241 Specification for Poly(Vinyl Chloride) (PVC) Pressure-Rated Pipe (SDR Series)

D2466 Specification for Poly(Vinyl Chloride) (PVC) Plastic Pipe Fittings, Schedule 40

D2467 Specification for Poly(Vinyl Chloride) (PVC) Plastic Pipe Fittings, Schedule 80

D2564 Specification for Solvent Cements for Poly(Vinyl Chloride) (PVC) Plastic Piping Systems

D2665 Specification for Poly(Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent Pipe and Fittings

D2672 Specification for Joints for IPS PVC Pipe Using Solvent Cement

D2729 Specification for Poly(Vinyl Chloride) (PVC) Sewer Pipe and Fittings

D2949 Specification for 3.25-in. Outside Diameter Poly(Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent Pipe and Fittings

D3034 Specification for Type PSM Poly(Vinyl Chloride) (PVC) Sewer Pipe and Fittings

F402 Practice for Safe Handling of Solvent Cements, Primers, and Cleaners Used for Joining Thermoplastic Pipe and Fittings

F412 Terminology Relating to Plastic Piping Systems

F438 Specification for Socket-Type Chlorinated Poly(Vinyl Chloride) (CPVC) Plastic Pipe Fittings, Schedule 40

F439 Specification for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe Fittings, Schedule 80

F441/F441M Specification for Chlorinated Poly(Vinyl Chloride) (CPVC) Plastic Pipe, Schedules 40 and 80

F442/F442M Specification for Chlorinated Poly(Vinyl Chloride) (CPVC) Plastic Pipe (SDR-PR)

F480 Specification for Thermoplastic Well Casing Pipe and Couplings Made in Standard Dimension Ratios (SDR), SCH 40 and SCH 80

F493 Specification for Solvent Cements for Chlorinated Poly(Vinyl Chloride) (CPVC) Plastic Pipe and Fittings

F512 Specification for Smooth-Wall Poly(Vinyl Chloride) (PVC) Conduit and Fittings for Underground Installation

F656 Specification for Primers for Use in Solvent Cement Joints of Poly(Vinyl Chloride) (PVC) Plastic Pipe and Fittings

F758 Specification for Smooth-Wall Poly(Vinyl Chloride) (PVC) Plastic Underdrain Systems for Highway, Airport, and Similar Drainage

F789 Specification for Type PS-46 and Type PS-115 Poly(Vinyl Chloride) (PVC) Plastic Gravity Flow Sewer Pipe and Fittings (Withdrawn 2004)³

F891 Specification for Coextruded Poly(Vinyl Chloride) (PVC) Plastic Pipe With a Cellular Core

F1866 Specification for Poly (Vinyl Chloride) (PVC) Plastic Schedule 40 Drainage and DWV Fabricated Fittings

F3328 Practice for the One-Step (Solvent Cement Only) Method of Joining Poly (Vinyl Chloride) (PVC) or Chlorinated Poly (Vinyl Chloride) (CPVC) Pipe and Piping Components with Tapered Sockets

3. Terminology

3.1 *Definitions*—Definitions are in accordance with Terminology F412, and abbreviations are in accordance with Terminology D1600, unless otherwise specified.

4. Summary of Practice

4.1 In order to achieve consistently strong and leak-free joining of poly(vinyl chloride) (PVC) or chlorinated poly(vinyl chloride) (CPVC) pipe and fittings, the following principles need to be clearly understood and followed:

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

³ The last approved version of this historical standard is referenced on www.astm.org.

- 4.1.1 The joining surfaces must be softened (dissolved) and made semi-fluid. (See Fig. 1.)
- 4.1.2 Solvent cement must be applied to the pipe end to fill the gap between pipe and fitting socket. (See Fig. 2.)
- 4.1.3 Assembly of pipe and fittings must be made while the surfaces are still wet and semi-fluid. (See Fig. 3.)
- 4.1.4 Joint strength develops as the solvents evaporate from the joint. At the bottom of the socket where there is an interference fit, the surfaces will fuse together; at the socket entrance where there is a gap, the solvent cement will fill the gap and bond to both surfaces. (See Fig. 4.)
- 4.2 Penetration and dissolution of the pipe and socket surfaces are achieved by use of both primer and solvent cement.
- 4.3 Solvent cement must be applied to the pipe end to fill the gap between the pipe and fittings.
- 4.4 During assembly, while the layers on the pipe and fittings are wet and semi-fluid, the surfaces will intermingle together and become *one* layer
- 4.5 As the solvents evaporate, the dissolved surfaces will harden with a corresponding increase in joint strength over time. A properly made joint will withstand the required working pressure long before the joint has fully cured. Assembled joints should not be disturbed until they have cured to withstand handling in accordance with primer and solvent cement manufacturers' recommendations.

5. Significance and Use

iTeh Standards

5.1 A solvent cement bonder/installer must follow all procedures to produce consistently strong and leak-free joints, either in shop operations or in the field.

6. Materials

Document Preview

- 6.1 *Pipe and Fittings*—The pipe and fittings shall meet the requirements of current applicable PVC or CPVC pipe and piping components standards. A partial list of these standards is given in Appendix X1.
- https://standards.iteh.ai/catalog/standards/sist/c5390d3b-7719-487c-b3b0-d0912321b26a/astm-d2855-20
- 6.2.1 *Specification*—The solvent cement should meet all the requirements of Specification D2564 for PVC solvent cement or Specification F493 for CPVC solvent cement.
- 6.2.2 *Selection*—Solvent cements are available in a variety of viscosities and wet film thicknesses to cover the range of pipe sizes from ½-in. to 30-in. (6.3 to 762 mm) for interference fit joints.

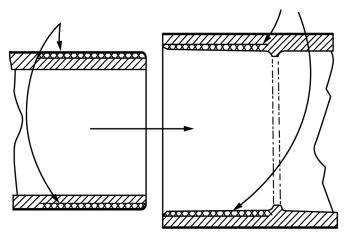


FIG. 1 Joint Surface Areas that must be Penetrated and Softened

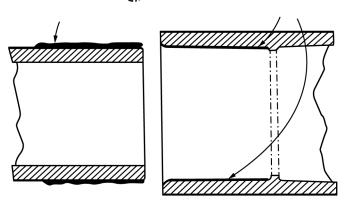


FIG. 2 Solvent Cement Coatings of Appropriate Thickness

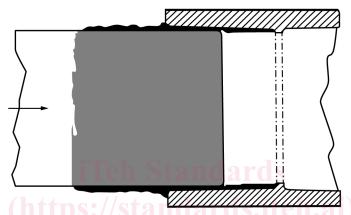


FIG. 3 Components must be Assembled while all Surfaces are Wet and Soft

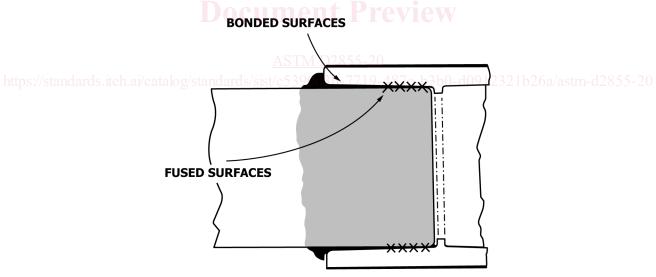


FIG. 4 Bonded and Fused Surfaces of Joined Pipe

- 6.2.2.1 The ability of a solvent cement to fill a gap in a pipe joint can be determined by considering its viscosity and wet-film thickness (see Note X2.1).
- 6.2.3 Storage—Solvent cements must be stored in a cool, dry place. All solvent cements have a limited shelf life. Consult the solvent cement manufacturer for specific recommendations on storage conditions and shelf life. The solvent cement is unsuitable for use if it exhibits an appreciable change from the original viscosity, or if signs of gelation (jelly-like) are apparent. Restoration of the original viscosity or removal of gelation by adding solvents or thinners is not recommended.

- 6.3 *Chemical Cleaners*—Chemical cleaners are used to remove surface debris only (for example, oil, dirt, grease, hydraulic fluid, paint, etc.). Chemical cleaners are not primers and therefore, do not soften the plastic surfaces. Chemical cleaner does not meet the 10% dissolution rule specified in Specification F656. A chemical cleaner is as follows:
- 6.3.1 Cleaner recommended by the pipe, fittings, or solvent cement manufacturer.
- 6.3.2 Sandpaper or similar abrasive clothes or grinders shall not be used to clean pipe or fittings.

Note 4—This practice can remove significant amount of material from the surfaces to be joined which will adversely affect the interference fit of the pipe and fitting and reduce the joint strength.

Note 5—Consult with pipe, fittings, and solvent cement manufacturers for their specific recommendations for mechanical abrading.

- 6.4 *Primers*—Primers are used to soften and dissolve the surfaces in order to better prepare them for joining. Refer to specific recommendations of the manufacturer
- 6.4.1 Primer Specification—primer shall meet the requirements of Specification F656.

7. Procedure

7.1 Cutting the Pipe—Using a suitable cutter, cut the pipe perpendicular to the pipe axis.

Note 6—It is important to cut the pipe perpendicular (square) to the pipe axis. A square cut provides maximum bonding area on the surface of the pipe. Tools used to cut plastic pipe must be in good condition and used in accordance with the tool manufacturer's recommendations. If there is any indication of damage or evidence of cracking after cutting the pipe, cut off at least 2 in. (50.8 mm) beyond any visible crack. Care must be exercised if using ratchet cutters, especially at 50°F (10°C) or lower temperatures, as they may split the pipe if not properly used and maintained. Care must also be exercised if using wheel-type plastic tubing cutters with a blade made for cutting plastic pipe, as they will create raised ridges which are caused by material displacement from the downward force of the cutting wheel and must be removed.

7.2 Chamfering and Deburring:

7.2.1 <u>Chamfering.—Chamfering—Chamfer the exterior pipe edge</u> with a file or a chamfering tool specifically designed for plastic pipe. The chamfer angle shall be between 10° and 22½° with a width range of a minimum ³/₃₂ to a maximum ⁵/₁₆ of an inch (2.5 to 7.9 mm) depending upon the pipe diameter (See Fig. 6 for tolerances). It is necessary to chamfer the exterior pipe edge to remove the burrs, raised ridges or sharp edges. or both, from the exterior pipe edge created by the pipe cutting process. (See Fig. 6.)

Note 7—Burrs, raised ridges or sharp edges or any combination thereof, if not removed, will scrape away softened socket material and deposit it and solvent cement into the fitting or pipe waterway creating a potential leak path in the joint. This accumulation of softened socket material and solvent cement inside the waterway of the pipe and fitting must be avoided. Chamfering allows the pipe to enter the fitting socket cleanly and uniformly.

FIG. 5 Cut the pipe straight at a 90° angle.

O. D. CHAMFER

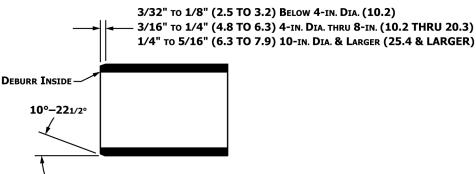


FIG. 6 Chamfer and Debur the Pipe End

Chamfering minimizes the potential for a leak path. A chamfering tool or a file is suitable for this purpose. Do not use handheld disc type side grinders to chamfer pipe.

7.2.2 Deburring—If burrs are present on the inside edge of the pipe, remove with a deburring tool.

Note 8—It is important to remove the burrs from the interior (waterway) to prevent obstructions and to enhance fluid flow.

7.3 Dry Joint Tightness Test—Prior to applying primer and solvent cement, insert the pipe gently and slowly into the socket until the first sign of resistance is detected to determine the point of interference. Check that an interference fit between the pipe and fitting occurs at approximately $\frac{1}{3}$ to $\frac{2}{3}$ of the socket depth. Do not force components together.

Note 9—Pipe and fittings are designed to have an interference fit. An interference fit occurs when the outside pipe diameter contacts (interferes) with the inside diameter of the fitting. An interference fit is essential to make a strong and leak-free joint and indicates an acceptable dimensional conformance between the components. If the fit between the pipe and fittings is loose, replace the pipe or fittings in order to obtain a proper interference fit between the components. Do not attempt to join pipe and fittings that do not have an interference fit.

7.4 Cleaning—Use a clean, dry cloth to clean the surfaces of pipe and fittings and to remove all foreign materials.

Note 10—Proper surface preparation is required to maximize the integrity of the joint. Foreign materials can impede the chemical joining process. Surfaces to be joined must be free of foreign materials (for example, oil, dirt, grease, hydraulic fluid, paint, etc.). If joining surfaces cannot be cleaned by wiping with a clean, dry cloth, a chemical cleaner must be used.

NOTE 11—Check chemical cleaners for compatibility with plastic material. Chemical cleaners only clean the pipe and fittings and will not soften the joining surfaces. Softening of surfaces is only accomplished by primer and solvent cement. If pipe and fittings are not properly cleaned, primer and solvent cement will not soften the joining surfaces. Follow the proper handling procedures provided by the chemical cleaner manufacturer.

FIG. 7 Debur and Chamfer the Pipe End

D2855 – 20

FIG. 8 Dry Joint Tightness Test for an Interference Fit

FIG. 9 Clean the pipe end and the fitting socket.

AS IM D2855-20

https://standards.iteh.ai/catalog/standards/sist/c5390d3b-7719-487c-b3b0-d0912321b26a/astm-d2855-20

7.5 *Mark the Pipe:* Measure the socket depth and transfer this measurement to the pipe O.D. with a mark. From this mark, place a second mark 2 in. (50.8 mm) further up the pipe, where possible.

Note 12—The first mark is the primer and solvent cement application area. The second ("witness") mark is a reference point used after joint assembly to verify that the pipe has fully bottomed out in the socket and has not backed out.

FIG. 10 Mark the socket depth on the pipe end and place a second mark 2 inches (50.8 mm) from the first mark