

Edition 4.0 2023-12

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Conductors of insulated cables Standards

Ames des câbles isolés S://Standards.iteh.ai)

Document Preview

IEC 60228:2023

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2023 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IFC Secretariat Tel.: +41 22 919 02 11

3, rue de Varembé info@iec.ch CH-1211 Geneva 20 www.iec.ch

Switzerland

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch. a/catalog/standards/iec/a/2

IEC Products & Services Portal - products.iec.ch

Discover our powerful search engine and read freely all the publications previews. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.orgThe world's leading online dictionary on electrotechnology, containing more than 22 300 terminological entries in English and French, with equivalent terms in 19 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC

Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié.

Recherche de publications IEC -

webstore.iec.ch/advsearchform

La recherche avancée permet de trouver des publications IEC en utilisant différents critères (numéro de référence, texte, comité d'études, ...). Elle donne aussi des informations sur les projets et les publications remplacées ou retirées.

IEC Just Published - webstore.iec.ch/justpublished

Restez informé sur les nouvelles publications IEC. Just Published détaille les nouvelles publications parues. Disponible en ligne et une fois par mois par email.

Service Clients - webstore.iec.ch/csc

Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions contactez-nous: sales@iec.ch.

IEC Products & Services Portal - products.iec.ch

Découvrez notre puissant moteur de recherche et consultez gratuitement tous les aperçus des publications. Avec un abonnement, vous aurez toujours accès à un contenu à jour adapté à vos besoins.

Electropedia - www.electropedia.org

Le premier dictionnaire d'électrotechnologie en ligne au monde, avec plus de 22 300 articles terminologiques en anglais et en français, ainsi que les termes équivalents dans 19 langues Egalement appelé additionnelles. Vocabulaire Electrotechnique International (IEV) en ligne.

Edition 4.0 2023-12

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Conductors of insulated cables Standards

Ames des câbles isolés S://standards.iteh.ai)

Document Preview

IEC 60228:2023

https://standards.iteh.ai/catalog/standards/iec/at25t2c8-60t0-437c-a14t-bt3b102bce91/iec-60228-2023

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 29.060.20 ISBN 978-2-8322-7808-6

Warning! Make sure that you obtained this publication from an authorized distributor.

Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

CONTENTS

FOREW	ORD	4
INTROD	UCTION	6
	pe	
	mative references	
	ms and definitions	
	ssification	
	rerials	
5.1	General	
5.2	Circular and shaped solid aluminium conductors	
5.3	Circular and shaped stranded aluminium conductors	
	d conductors and stranded conductors	
6.1	Solid conductors (class 1)	
6.1.		
6.1.		
6.2	1 /	
6.2		
6.2		10
6.3	Stranded compacted circular conductors and stranded shaped conductors (class 2)	10
6.3	1 Construction	10
6.3	2 Resistance	10
6.4	Milliken conductors (class 2)	10
6.4	1 Construction	10
6.4	2 Resistance	10
7 Flex	xible conductors (classes 5 and 6)	
7.1	dards, itch at/eatalog/standards/iec/af25f2c8-60f0-437c-a14f-bf3b102bce91/iec-602 Construction	10
7.2	Resistance	11
8 Che	eck of compliance with Clause 6 and Clause 7	11
Annex A	(normative) Measurement of resistance	16
	(informative) Exact formulae for the temperature correction factors	
	informative) Guidance on the dimensional limits of circular conductors	
C.1	Purpose	
C.2	Dimensional limits for circular copper conductors	
C.3	Dimensional limits for stranded compacted circular copper, aluminium and	10
0.5	aluminium alloy conductors	19
C.4	Dimensional limits for circular solid aluminium conductors	
Bibliogra	aphy	23
3		
Table 1	– Tensile strength limits for circular and shaped solid aluminium conductors	8
Table 2	– Tensile strength limits for circular and shaped stranded aluminium	
conduct	ors	9
Table 3	Class 1 solid conductors for single-core and multi-core cables	12
Table 4	Class 2 stranded conductors for single-core and multi-core cables	13
	Class 5 flexible copper conductors for single-core and multi-core cables	
	Class 6 flexible copper conductors for single-core and multi-core cables	
1 9010 0	olado o noxidio doppor donaudidio idi olligie-dole and multi-dole dables	10

Table A.1 – Temperature correction factors k_t for conductor resistance to correct the	
measured resistance at t °C to 20 °C	17
Table C.1 – Maximum diameters of solid, non-compacted stranded and flexible circular copper conductors	20
Table C.2 – Minimum and maximum diameters of stranded compacted circular copper, aluminium and aluminium alloy conductors	21
Table C.3 – Minimum and maximum diameters of solid circular aluminium conductors	22

iTeh Standards (https://standards.iteh.ai) Document Preview

IEC 60228:2023

INTERNATIONAL ELECTROTECHNICAL COMMISSION

CONDUCTORS OF INSULATED CABLES

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 60228 has been prepared by IEC technical committee 20: Electric cables. It is an International Standard.

This fourth edition cancels and replaces the third edition published in 2004. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) a description of Milliken conductors has been added;
- b) nominal cross-sectional areas above 2 500 mm² have been added;

c) the old 2 500 mm² aluminium resistance value has been corrected and a new value introduced.

For legacy systems where the 2 500 mm² aluminium conductor was designed taking into account the value presented in previous editions and no longer tabulated, then the original design can be maintained and still utilized.

The suppliers can furthermore utilize such superseded design of 2 500 mm² aluminium conductors either in systems already designed and qualified but not delivered or for example to produce repair and additional spare lengths for delivered systems.

The choice of utilizing the original superseded design of 2 500 mm² aluminium conductors or a new one based on the new resistance tabulated value is a matter of agreement between the supplier and final users.

The text of this International Standard is based on the following documents:

Draft	Report on voting
20/2125/FDIS	20/2131/RVD

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- https:/reconfirmed.h.ai/catalog/standards/iec/af25f2c8-60f0-437c-a14f-bf3b102bce91/iec-60228-2023
 - withdrawn, or
 - revised.

INTRODUCTION

This document is intended as a fundamental reference standard for IEC technical committees and National Committees in drafting standards for electric cables, and to the National Committees in drafting specifications for use in their own countries. These committees select from the tables of this general standard the conductors appropriate to the particular applications relevant to them and either include the applicable details in their cable specifications or make appropriate references to this document.

iTeh Standards (https://standards.iteh.ai) Document Preview

IEC 60228:2023

CONDUCTORS OF INSULATED CABLES

1 Scope

This document specifies the nominal cross-sectional areas, in the range 0,5 mm² to 3 500 mm², for conductors in electric power cables and cords of a wide range of types. Requirements for numbers and sizes of wires and resistance values are also included. These conductors include solid, stranded and Milliken, copper, aluminium and aluminium alloy conductors in cables for fixed installations and flexible copper conductors.

This document does not apply to conductors for telecommunication purposes.

The applicability of this document to a particular type of cable is as specified in the standard for the type of cable.

Unless specified otherwise in a particular clause, this document relates to the conductors in the finished cable and not to the conductor as made or supplied for inclusion into a cable.

Conductors described in this document are specified in metric sizes.

Informative annexes provide supplementary information covering temperature correction factors for resistance measurement (Annex B) and guidance on dimensional limits of circular conductors (Annex C).

2 Normative references Ocument Preview

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IECEE OD-5014, Instrument Accuracy Limits

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- IEC Electropedia: available at https://www.electropedia.org/
- ISO Online browsing platform: available at https://www.iso.org/obp

3.1

metal-coated

coated with a thin layer of suitable metal, such as tin or tin alloy

3.2

nominal cross-sectional area

value that identifies a particular size of conductor but is not subject to direct measurement

Note 1 to entry: Each particular size of conductor in this document is required to meet a maximum resistance value.

3.3

Milliken conductor

stranded conductor comprising an assembly of shaped conductors, lightly insulated from each other

4 Classification

The conductors have been divided into four classes, 1, 2, 5 and 6. Those in classes 1 and 2 are intended for use in cables for fixed installations. Classes 5 and 6 are intended for use in flexible cables and cords but can also be used for fixed installations.

- class 1: solid conductors;
- class 2: stranded conductors;
- class 5: flexible conductors;
- class 6: flexible conductors made with smaller diameter wires than class 5 for the same nominal conductor cross-section.

5 Materials

5.1 General

The wires of conductors shall consist of one of the following (except for the Milliken central element):

- plain or metal-coated annealed copper;
- aluminium or aluminium alloy.

The wires of stranded conductors (for example Milliken conductors) can be oxidized or enamelled.

5.2 Circular and shaped solid aluminium conductors

Circular and shaped solid aluminium conductors shall be made from aluminium such that the tensile strength of the completed conductor is within the limits given in Table 1.

Table 1 – Tensile strength limits for circular and shaped solid aluminium conductors

Nominal cross-sectional area	Tensile strength	
mm ²	N/mm ²	
10 and 16	110 to 165	
25 and 35	60 to 130	
50	60 to 110	
70 and above	60 to 90	

There are no limits defined for the tensile strength of aluminium alloy solid conductors.

5.3 Circular and shaped stranded aluminium conductors

Stranded aluminium conductors shall be made from aluminium such that the tensile strength of the individual wires is within the limits given in Table 2:

Table 2 – Tensile strength limits for circular and shaped stranded aluminium conductors

Nominal cross-sectional area	Tensile strength
mm ²	N/mm²
10	up to 200
16 and above	125 to 205

There are no limits defined for the tensile strength of aluminium alloy stranded conductors.

This data can only be checked on wires taken before stranding and not on wires taken from a stranded conductor.

6 Solid conductors and stranded conductors

6.1 Solid conductors (class 1) Standards

6.1.1 Construction

- a) Solid conductors or conductor wires shall consist of one of the materials specified in Clause 5.
- b) Solid copper conductors shall be of circular cross-section.
 - NOTE Solid copper conductors having nominal cross-section areas of 25 mm² and above are for particular types of cable, e.g. mineral insulated, and not for general purposes.
- c) Solid aluminium and solid aluminium alloy conductors of sizes 10 mm² to 35 mm² shall be of circular cross-section. Larger sizes shall be of circular cross-section for single-core cables and may be of either circular or shaped cross-section for multi-core cables.

6.1.2 Resistance

The resistance of each conductor at 20 °C, when determined in accordance with Clause 8, shall not exceed the appropriate maximum value given in Table 3.

For solid aluminium alloy conductors, having the same nominal cross-sectional area as an aluminium conductor, the resistance value given in Table 3 should be multiplied by a factor of 1,162 unless otherwise agreed between the manufacturer and the purchaser.

6.2 Stranded circular non-compacted conductors (class 2)

6.2.1 Construction

- a) Stranded circular non-compacted conductors (class 2) shall consist of one of the materials specified in Clause 5.
- b) Stranded aluminium or aluminium alloy conductors shall have a cross-sectional area not less than 10 mm².
- c) The wires in each conductor shall all have the same nominal diameter.
- d) The number of wires in each conductor shall be not less than the appropriate minimum number given in Table 4.

6.2.2 Resistance

The resistance of each conductor at 20 °C, when determined in accordance with Clause 8, shall not exceed the appropriate maximum value given in Table 4.

6.3 Stranded compacted circular conductors and stranded shaped conductors (class 2)

6.3.1 Construction

- a) Stranded compacted circular conductors and stranded shaped conductors (class 2) shall consist of one of the materials specified in Clause 5. Stranded compacted circular aluminium or aluminium alloy conductors shall have a nominal cross-sectional area not less than 10 mm². Stranded compacted circular copper conductors shall have a nominal cross-sectional area not less than 1,5 mm². Stranded shaped copper, aluminium or aluminium alloy conductors shall have a nominal cross-sectional area of not less than 25 mm².
- b) The ratio of the diameters of two different wires in the same conductor shall not exceed 2, except for conductors made with pre-shaped wires.
- c) The number of wires in each conductor shall be not less than the appropriate minimum number given in Table 4, except for conductors made with pre-shaped wires. This requirement applies to conductors made with wires of circular cross-section before compaction.

6.3.2 Resistance

The resistance of each conductor at 20 °C, when determined in accordance with Clause 8, shall not exceed the appropriate maximum value given in Table 4.

6.4 Milliken conductors (class 2)

6.4.1 Construction

- a) Milliken conductors (class 2) shall consist of any of the materials specified in Clause 5.

 Milliken conductors shall have a nominal cross-sectional area not less than 800 mm², and the minimum number of wires for each cross section is not specified.
 - b) The ratio of the diameters of two different wires of any segment shall not exceed 2 (Milliken central element excluded).
 - c) The Milliken central element can be empty, with a solid conductor, wires or with a plastic filler
 - d) This conductor may be constructed from 4, 5, or 6 equal segments. The number of wires in each segment is defined by the manufacturer. In the case of a central element formed with wires, it can be considered as an additional segment with a polygonal shape.

6.4.2 Resistance

The resistance of the whole conductor at 20 °C, for all different constructions described in 6.4.1, when determined in accordance with Clause 8, shall not exceed the appropriate maximum value given in Table 4.

7 Flexible conductors (classes 5 and 6)

7.1 Construction

- a) Flexible conductors (classes 5 and 6) shall consist of plain or metal-coated annealed copper.
- b) The wires in each conductor shall have the same nominal diameter.
- c) The diameter of the wires in each conductor shall not exceed the appropriate maximum value given in Table 5 for class 5 or Table 6 for class 6 conductors.

7.2 Resistance

The resistance of each conductor at 20 °C, when determined in accordance with Clause 8, shall not exceed the appropriate maximum value given in Table 5 or Table 6.

8 Check of compliance with Clause 6 and Clause 7

Compliance with the requirements for construction of 6.1.1, 6.2.1, 6.3.1, 6.4.1 and 7.1 shall be checked on the completed cable by inspection and measurement where practicable.

Compliance with the requirements for resistance given in 6.1.2, 6.2.2, 6.3.2, 6.4.2, and 7.2 shall be checked by measurement in accordance with Annex A and corrected for temperature by the factors in Table A.1.

iTeh Standards (https://standards.iteh.ai) Document Preview

IEC 60228:2023

Table 3 – Class 1 solid conductors for single-core and multi-core cables

1	2	3	4
Nominal cross-	Maximu	m resistance of conductor	at 20 °C
sectional area	Circular, annealed	Circular, annealed copper conductors	
	Plain	Metal-coated	aluminium alloy conductors, circular or shaped ^c
mm^2	Ω/km	Ω/km	Ω/km
0,5	36,0	36,7	-
0,75	24,5	24,8	-
1,0	18,1	18,2	-
1,5	12,1	12,2	-
2,5	7,41	7,56	-
4	4,61	4,70	-
6	3,08	3,11	-
10	1,83	1,84	3,08 ^a
16	1,15	1,16	1,91 ^a
25	0,727 ^b	-	1,20ª
35	0,524 ^b	-	0,868 ^a
50	0,387 ^b	ındards	0,641
70	0,268 ^b		0,443
95	110S _{0,193b} 12N	lards.iteh.a	0,320 ^d
120	0,153 ^b	t Preview	0,253 ^d
150	0,124 ^b	rrieview	0,206 ^d
185	0,101 ^b	-	0,164 ^d
240	0,077 5 ^b IEC 602	<u>28:2023</u>	0,125 ^d
ps://standards.iteh.ai/c	o,062 0 ^b	8-60f0-437c-a14f-bf3b	02bce91/iec-60228-20 0,100 ^d
400	0,046 5 ^b	-	0,077 8
500	-	-	0,060 5
630	-	-	0,046 9
800	-	-	0,036 7
1 000	-	-	0,029 1
1 200	-	-	0,024 7
1 400	-	-	0,021 2
1 600	-	-	0,018 6

^a Aluminium conductors 10 mm² to 35 mm² circular only; see 6.1.1 c).

b See note in 6.1.1 b).

c See note in 6.1.2.

For single-core cables, four sectoral shaped conductors may be assembled into a single circular conductor. The maximum resistance of the assembled conductor shall be 25 % of that of the individual component conductors.